Discrete anisotropic curve shortening flow

被引:52
作者
Dziuky, G [1 ]
机构
[1] Univ Freiburg, Inst Angew Math, D-79104 Freiburg, Germany
关键词
curve shortening flow; motion by anisotropic curvature; finite element approximation; convergence;
D O I
10.1137/S0036142998337533
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Anisotropic curve shortening flow is a geometric evolution of a curve and is equivalent to the gradient flow of anisotropic interface energy. We develop a numerical scheme for this nonlinear and degenerate problem, which is based on the fact that the evolution problem can be written formally as a linear partial differential equation on the interface itself. The scheme requires the solution of a tridiagonal complex linear system in each time step. We prove optimal error estimates in adequate norms for the semidiscrete scheme and provide numerical test computations. The scheme can also be applied to crystalline energies.
引用
收藏
页码:1808 / 1830
页数:23
相关论文
共 19 条
[1]   MULTIPHASE THERMOMECHANICS WITH INTERFACIAL STRUCTURE .2. EVOLUTION OF AN ISOTHERMAL INTERFACE [J].
ANGENENT, S ;
GURTIN, ME .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1989, 108 (04) :323-391
[2]  
Bansch E., 1992, AMS SELECTED LECT MA, P16
[3]  
Bellettini G., 1996, J. Hokkaido Math., V25, P537
[4]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[5]   Finite element error bounds for a curve shrinking with prescribed normal contact to a fixed boundary [J].
Deckelnick, K ;
Elliott, CM .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1998, 18 (04) :635-654
[6]  
DECKELNICK K, IN PRESS M2AN MATH M
[7]  
DECKELNICK K, 1994, CALCULUS VARIATIONS, P100
[8]  
DZIUK G, 1991, NUMER MATH, V58, P603
[10]  
FIERRO F, 1994, CALCOLO, V3, P191