Quantum groups and deformed special relativity

被引:8
作者
deAzcarraga, JA
Kulish, PP
Rodenas, F
机构
[1] UNIV VALENCIA, CTR MIXTO, CSIC, IFIC, E-46100 BURJASSOT, SPAIN
[2] UNIV POLITECN VALENCIA, DEPT MATEMAT APLICADA, E-46071 VALENCIA, SPAIN
来源
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS | 1996年 / 44卷 / 01期
关键词
D O I
10.1002/prop.2190440102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The structure and properties of possible q-Minkowski spaces are reviewed and the corresponding non-commutative differential calculi are developed in detail and compared with already existing proposals. This is done by stressing the covariance properties of these algebras with respect to the corresponding q-deformed Lorentz groups as described by appropriate reflection equations. This allow us to give an unified treatment for different q-Minkowski algebras. Some isomorphisms among the space-time and derivative algebras are demonstrated, and their representations are described briefly. Finally, some. physical consequences and open problems are discussed.
引用
收藏
页码:1 / 40
页数:40
相关论文
共 116 条
[1]  
ALEKSEEV A, 1992, LECT NOTES MATH, V1510, P148
[2]  
ASCHIERI P, 4494 DFTT
[3]   QUANTUM (2+1) KINEMATICAL ALGEBRAS - A GLOBAL APPROACH [J].
BALLESTEROS, A ;
HERRANZ, FJ ;
DELOLMO, MA ;
SANTANDER, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (04) :1283-1297
[4]   4-DIMENSIONAL QUANTUM AFFINE ALGEBRAS AND SPACE-TIME Q-SYMMETRIES [J].
BALLESTEROS, A ;
HERRANZ, FJ ;
DELOLMO, MA ;
SANTANDER, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (09) :4928-4940
[5]   ON Q-TENSOR OPERATORS FOR QUANTUM GROUPS [J].
BIEDENHARN, LC ;
TARLINI, M .
LETTERS IN MATHEMATICAL PHYSICS, 1990, 20 (04) :271-278
[6]  
BIEDENHARN LC, 1990, P CLAUSTH INT WORKSH, P67
[7]   TENSOR REPRESENTATION OF THE QUANTUM GROUP SLQ(2,C) AND QUANTUM MINKOWSKI SPACE [J].
CAROWWATAMURA, U ;
SCHLIEKER, M ;
SCHOLL, M ;
WATAMURA, S .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1990, 48 (01) :159-165
[8]   A QUANTUM LORENTZ GROUP [J].
CAROWWATAMURA, U ;
SCHLIEKER, M ;
SCHOLL, M ;
WATAMURA, S .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1991, 6 (17) :3081-3108
[9]   R-MATRIX AND BICOVARIANT CALCULUS FOR THE INHOMOGENEOUS QUANTUM GROUPS IGLQ(N) [J].
CASTELLANI, L .
PHYSICS LETTERS B, 1993, 298 (3-4) :335-338
[10]   THE QUANTUM HEISENBERG-GROUP H(1)Q [J].
CELEGHINI, E ;
GIACHETTI, R ;
SORACE, E ;
TARLINI, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (05) :1155-1158