共 35 条
NMR characterizations of an amyloidogenic conformational ensemble of the PI3KSH3 domain
被引:12
作者:
Ahn, Hee-Chul
Le, Yen T. H.
Nagchowdhuri, Partha S.
Derose, Eugene F.
Putnam-Evans, Cindy
London, Robert E.
Markley, John L.
Lim, Kwang Hun
[1
]
机构:
[1] E Carolina Univ, Dept Chem, Greenville, NC 27858 USA
[2] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA
[3] NIEHS, Struct Biol Lab, Res Triangle Pk, NC 27709 USA
[4] E Carolina Univ, Dept Biol, Greenville, NC 27858 USA
关键词:
amyloids;
PI3KSH3;
NMR;
dynamics;
amyloidogenic intermediate;
long-range interactions;
PRE;
D O I:
10.1110/ps.062154306
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Amyloid formation is associated with structural changes of native polypeptides to monomeric intermediate states and their self-assembly into insoluble aggregates. Characterizations of the amyloidogenic intermediate state are, therefore, of great importance in understanding the early stage of amyloidogenesis. Here, we present NMR investigations of the structural and dynamic properties of the acid-unfolded amyloidogenic intermediate state of the phosphatidylinositol 3-kinase (PI3K) SH3 domain-a model peptide. The monomeric amyloidogenic state of the SH3 domain studied at pH 2.0 (35 degrees C) was shown to be substantially disordered with no secondary structural preferences. N-15 NMR relaxation experiments indicated that the unfolded polypeptide is highly flexible on a subnanosecond timescale when observed under the amyloidogenic condition (pH 2.0, 35 degrees C). However, more restricted motions were detected in residues located primarily in the beta-strands as well as in a loop in the native fold. In addition, nonnative long-range interactions were observed between the residues with the reduced flexibility by paramagnetic relaxation enhancement (PRE) experiments. These indicate that the acid-unfolded state of the SH3 domain adopts a partly folded conformation through nonnative long-range contacts between the dynamically restricted residues at the amyloid-forming condition.
引用
收藏
页码:2552 / 2557
页数:6
相关论文