Electrical characterization of stressed and broken down SiO2 films at a nanometer scale using a conductive atomic force microscope

被引:95
作者
Porti, M [1 ]
Nafría, M
Aymerich, X
Olbrich, A
Ebersberger, B
机构
[1] Univ Autonoma Barcelona, Dept Elect Engn, Bellaterra 08193, Spain
[2] Infineon Technol AG, D-81730 Munich, Germany
关键词
D O I
10.1063/1.1430542
中图分类号
O59 [应用物理学];
学科分类号
摘要
A conductive atomic force microscope (C-AFM) has been used to investigate the degradation and breakdown of ultrathin (<6 nm) films of SiO2 at a nanometric scale. Working on bare gate oxides, the conductive tip of the C-AFM allows the electrical characterization of nanometric areas. Due to the extremely small size of the analyzed areas, several features, which are not registered during macroscopic tests, are observed. In particular, before the oxide breakdown, switchings between different conduction states and sudden changes of conductivity have been measured, which have been related to the prebreakdown noise observed in conventional metal-oxide-semiconductor structures. Moreover, similar switchings have been also measured after the oxide breakdown, which have been related to the opening or closure of conduction channels between the electrodes. The C-AFM has also allowed the determination of the areas in which the degradation and breakdown take place. The results have shown that, although degradation takes place in areas of few hundreds of nm(2), breakdown is laterally propagated to neighbor spots, affecting areas of thousands of nm(2). The size of the affected area has been found to be strongly related to the hardness of the breakdown event. The phenomenology observed with the C-AFM provides experimental evidence of the local nature of the degradation and breakdown processes in ultrathin SiO2 films. Therefore, the C-AFM is a powerful tool to analyze the microscopic physics of these phenomena at the same dimensional scale at which they take place. (C) 2002 American Institute of Physics.
引用
收藏
页码:2071 / 2079
页数:9
相关论文
共 34 条
[1]   Pre-breakdown in thin SiO2 films [J].
Crupi, F ;
Neri, B ;
Lombardo, S .
IEEE ELECTRON DEVICE LETTERS, 2000, 21 (06) :319-321
[2]   Macroscopic and microscopic studies of electrical properties of very thin silicon dioxide subject to electrical stress [J].
Daniel, ES ;
Jones, JT ;
Marsh, OJ ;
McGill, TC .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1997, 15 (04) :1089-1096
[3]   SELECTIVE AREA OXIDATION OF SILICON WITH A SCANNING FORCE MICROSCOPE [J].
DAY, HC ;
ALLEE, DR .
APPLIED PHYSICS LETTERS, 1993, 62 (21) :2691-2693
[4]   Soft breakdown of ultra-thin gate oxide layers [J].
Depas, M ;
Nigam, T ;
Heyns, MM .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1996, 43 (09) :1499-1504
[5]   IMPACT IONIZATION, TRAP CREATION, DEGRADATION, AND BREAKDOWN IN SILICON DIOXIDE FILMS ON SILICON [J].
DIMARIA, DJ ;
CARTIER, E ;
ARNOLD, D .
JOURNAL OF APPLIED PHYSICS, 1993, 73 (07) :3367-3384
[6]   DEFECT DYNAMICS AND WEAR-OUT IN THIN SILICON-OXIDES [J].
FARMER, KR ;
BUHRMAN, RA .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1989, 4 (12) :1084-1105
[7]   Electron emission in intense electric fields [J].
Fowler, RH ;
Nordheim, L .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-CONTAINING PAPERS OF A MATHEMATICAL AND PHYSICAL CHARACTER, 1928, 119 (781) :173-181
[8]   Mechanisms of surface anodization produced by scanning probe microscopes [J].
Gordon, AE ;
Fayfield, RT ;
Litfin, DD ;
Higman, TK .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1995, 13 (06) :2805-2808
[9]   DIELECTRIC-BREAKDOWN IN ELECTRICALLY STRESSED THIN-FILMS OF THERMAL SIO2 [J].
HARARI, E .
JOURNAL OF APPLIED PHYSICS, 1978, 49 (04) :2478-2489
[10]   Ballistic-electron emission microscopy studies of charge trapping in SiO2 [J].
Kaczer, B ;
Pelz, JP .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1996, 14 (04) :2864-2871