Phase-change random access memory: A scalable technology

被引:688
作者
Raoux, S. [1 ]
Burr, G. W. [1 ]
Breitwisch, M. J. [2 ]
Rettner, C. T. [1 ]
Chen, Y. -C. [3 ]
Shelby, R. M. [1 ]
Salinga, M. [4 ]
Krebs, D. [4 ]
Chen, S. -H. [5 ]
Lung, H. -L. [5 ]
Lam, C. H. [2 ]
机构
[1] IBM Almaden Res Ctr, IBM Qimonda Macronix PCRAM Joint Project, San Jose, CA 95120 USA
[2] IBM Corp, Thomas J Watson Res Ctr, IBM Qimonda Macronix PCRAM Joint Project, Yorktown Hts, NY 10598 USA
[3] Macronix Int Co Ltd, Emerging Cent Lab, Adv Memory Res Dept ME 130, IBM Qimonda Macronix PCRAM Joint Project, Hsinchu, Taiwan
[4] Rhein Westfal TH Aachen, Phys Inst 1A, Aachen, Germany
[5] IBM Corp, Thomas J Watson Res Ctr, Maacronix Int Co Ltd, IBM Qimonda Macronix PCRAM Joint Project, Yorktown Hts, NY 10598 USA
关键词
D O I
10.1147/rd.524.0465
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Nonvolatile RAM using resistance contrast in phase-change materials [or phase-change RAM (PCRAM)] is a promising technology for future storage-class memory. However, such a technology can succeed only if it can scale smaller in size, given the increasingly tiny memory cells that are projected for future technology nodes (i.e., generations). We first discuss the critical aspects that may affect the scaling of PCRAM, including materials properties, power consumption during programming and read operations, thermal cross-talk between memory cells, and failure mechanisms. We then discuss experiments that directly address the scaling properties of the phase-change materials themselves, including studies of phase transitions in both nanoparticles and ultrathin films as a function of particle size and film thickness. This work in materials directly motivated the successful creation of a series of prototype PCRAM devices, which have been fabricated and tested at phase-change material cross-sections with extremely small dimensions as low as 3 nm x 20 nm. These device measurements provide a clear demonstration of the excellent scaling potential offered by this technology, and they are also consistent with the scaling behavior predicted by extensive device simulations. Finally, we discuss issues of device integration and cell design, manufacturability, and reliability.
引用
收藏
页码:465 / 479
页数:15
相关论文
共 75 条
[1]   MECHANISM OF THRESHOLD SWITCHING IN AMORPHOUS ALLOYS [J].
ADLER, D ;
HENISCH, HK ;
MOTT, N .
REVIEWS OF MODERN PHYSICS, 1978, 50 (02) :209-220
[2]  
Ahn SJ, 2005, 2005 Symposium on VLSI Technology, Digest of Technical Papers, P98
[3]   Highly manufacturable high density phase change memory of 64Mb and beyond [J].
Ahn, SJ ;
Song, YJ ;
Jeong, CW ;
Shin, JM ;
Fai, Y ;
Hwang, YN ;
Lee, SH ;
Ryoo, KC ;
Lee, SY ;
Park, JH ;
Horii, H ;
Ha, YH ;
Yi, JH ;
Kuh, BJ ;
Koh, GH ;
Jeong, GT ;
Jeong, HS ;
Kim, K ;
Ryu, BI .
IEEE INTERNATIONAL ELECTRON DEVICES MEETING 2004, TECHNICAL DIGEST, 2004, :907-910
[4]  
[Anonymous], 2006, P EUR PHAS CHANG OV
[5]   Novel lithography-independent pore phase change memory [J].
Breitwisch, M. ;
Nirschl, T. ;
Chen, C. F. ;
Zhu, Y. ;
Lee, M. H. ;
Lamorey, M. ;
Burr, G. W. ;
Joseph, E. ;
Schrott, A. ;
Philipp, J. B. ;
Cheek, R. ;
Happ, T. D. ;
Chen, S. H. ;
Zaidi, S. ;
Flaitz, P. ;
Bruley, J. ;
Dasaka, R. ;
Rajendran, B. ;
Rossnagel, S. ;
Yang, M. ;
Chen, Y. C. ;
Bergmann, R. ;
Lung, H. L. ;
Lam, C. .
2007 SYMPOSIUM ON VLSI TECHNOLOGY, DIGEST OF TECHNICAL PAPERS, 2007, :100-+
[6]  
CALDWELL M, 2007, AM CHEM SOC 234 NAT
[7]   Biomimetic approaches for fabricating high-density nanopatterned arrays [J].
Cha, Jennifer N. ;
Zhang, Yuan ;
Wong, H. -S. Philip ;
Raoux, Simone ;
Rettner, Charles ;
Krupp, Leslie ;
Deline, Vaughn .
CHEMISTRY OF MATERIALS, 2007, 19 (04) :839-843
[8]   COMPOUND MATERIALS FOR REVERSIBLE, PHASE-CHANGE OPTICAL-DATA STORAGE [J].
CHEN, M ;
RUBIN, KA ;
BARTON, RW .
APPLIED PHYSICS LETTERS, 1986, 49 (09) :502-504
[9]  
CHEN YC, 2003, IEEE INT EL DEV M IE
[10]  
CHEN YC, 2006, IEDM, P777