Real forms of quantum orthogonal groups, q-Lorentz groups in any dimension

被引:6
作者
Aschieri, P [1 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Theoret Phys Grp, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
real forms; automorphisms; q-Lorentz group; q-Minkowski space;
D O I
10.1023/A:1007636508798
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We review known real forms of the quantum orthogonal groups SOq(N). New *-conjugations are then introduced and we contruct all real forms of quantum orthogonal groups. We thus give an RTT formulation of the *-conjugations on SOq(N) that is complementary to the U-q(g) *-structure classification of Twietmeyer. In particular, we easily find and describe the real forms SOq(N-1,1) for any value of N. Quantum subspaces of the q-Minkowski space are analyzed.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 11 条
[1]   Universal enveloping algebra and differential calculi on inhomogeneous orthogonal q-groups [J].
Aschieri, P ;
Castellani, L .
JOURNAL OF GEOMETRY AND PHYSICS, 1998, 26 (3-4) :247-271
[2]   SOQ(N+1,N-1) AS A REAL FORM OF SOQ(2N,C) [J].
CELEGHINI, E ;
GIACHETTI, R ;
REYMAN, A ;
SORACE, E ;
TARLINI, M .
LETTERS IN MATHEMATICAL PHYSICS, 1991, 23 (01) :45-49
[3]  
Cerchiai BL, 1998, EUR PHYS J C, V5, P553
[4]  
DOBREV VK, 1995, PHYS LETT B, V346, P427
[5]   CANONICAL Q-DEFORMATIONS OF NONCOMPACT LIE (SUPER-)ALGEBRAS [J].
DOBREV, VK .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (06) :1317-1334
[6]  
Faddeev L D., 1990, LENINGRAD MATH J, V1, P193
[7]   QUANTUM GROUPS SOQ(N), SPQ(N) HAVE Q-DETERMINANTS, TOO [J].
FIORE, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (11) :3795-3802
[8]  
Gilmore R., 1974, LIE GROUPS LIE ALGEB, DOI DOI 10.1063/1.3128987
[9]  
HAUSNER M, 1968, LIE GROUPS LIE ALGEB
[10]   REAL FORMS OF UQ(G) [J].
TWIETMEYER, E .
LETTERS IN MATHEMATICAL PHYSICS, 1992, 24 (01) :49-58