SOQ(N+1,N-1) AS A REAL FORM OF SOQ(2N,C)

被引:13
作者
CELEGHINI, E
GIACHETTI, R
REYMAN, A
SORACE, E
TARLINI, M
机构
[1] IST NAZL FIS NUCL,FLORENCE,ITALY
[2] UNIV BOLOGNA,DIPARTMENTO MATEMAT,I-40126 BOLOGNA,ITALY
[3] VA STEKLOV MATH INST,LENINGRAD,USSR
关键词
D O I
10.1007/BF01811293
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum pseudo-orthogonal groups SO(q)(n + 1, n - 1) are defined as real forms of quantum orthogonal groups SO(q)(2n, C) by means of a suitable antilinear involution. In particular, the case n = 2 gives a quantized Lorentz group.
引用
收藏
页码:45 / 49
页数:5
相关论文
共 8 条
[1]  
[Anonymous], 1982, LECT NOTES PHYS
[2]   TENSOR REPRESENTATION OF THE QUANTUM GROUP SLQ(2,C) AND QUANTUM MINKOWSKI SPACE [J].
CAROWWATAMURA, U ;
SCHLIEKER, M ;
SCHOLL, M ;
WATAMURA, S .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1990, 48 (01) :159-165
[3]   THE 3-DIMENSIONAL EUCLIDEAN QUANTUM GROUP E(3)Q AND ITS R-MATRIX [J].
CELEGHINI, E ;
GIACHETTI, R ;
SORACE, E ;
TARLINI, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (05) :1159-1165
[4]  
DRINFELD VG, 1985, P INT C MATH BERKELE, V1, P798
[5]  
Faddeev L. D, 1988, ALGEBRAIC ANAL, P129
[6]   LAX EQUATIONS AND QUANTUM GROUPS [J].
MAILLET, JM .
PHYSICS LETTERS B, 1990, 245 (3-4) :480-486
[7]  
Manin Y., 1988, QUANTUM GROUPS NONCO
[8]   QUANTUM DEFORMATION OF LORENTZ GROUP [J].
PODLES, P ;
WORONOWICZ, SL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 130 (02) :381-431