Photocatalytic Activity Enhanced by Plasmonic Resonant Energy Transfer from Metal to Semiconductor

被引:1052
作者
Cushing, Scott K. [1 ,2 ]
Li, Jiangtian [1 ]
Meng, Fanke [1 ]
Senty, Tess R. [2 ]
Suri, Savan [1 ]
Zhi, Mingjia [1 ]
Li, Ming [1 ]
Bristow, Alan D. [2 ]
Wu, Nianqiang [1 ]
机构
[1] W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA
[2] W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA
基金
美国国家科学基金会;
关键词
VISIBLE-LIGHT; SOLAR-CELLS; SILVER NANOSTRUCTURES; DIPOLE APPROXIMATION; TITANIUM-DIOXIDE; CHARGE-CARRIERS; PARTICLE-SIZE; NANOPARTICLES; GOLD; SURFACE;
D O I
10.1021/ja305603t
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Plasmonic metal nanostructures have been incorporated into semiconductors to enhance the solar-light harvesting and the energy-conversion efficiency. So far the mechanism of energy transfer from the plasmonic metal to semiconductors remains unclear. Herein the underlying plasmonic energy-transfer mechanism is unambiguously determined in Au@SiO2@Cu2O sandwich nanostructures by transient-absorption and photocatalysis action spectrum measurement. The gold core converts the energy of incident photons into localized surface plasmon resonance oscillations and transfers the plasmonic energy to the Cu2O semiconductor shell via resonant energy transfer (RET). RET generates electron hole pairs in the semiconductor by the dipole dipole interaction between the plasmonic metal (donor) and semiconductor (acceptor), which greatly enhances the visible-light photocatalytic activity as compared to the semiconductor alone. RET from a plasmonic metal to a semiconductor is a viable and efficient mechanism that can be used to guide the design of photocatalysts, photovoltaics, and other optoelectronic devices.
引用
收藏
页码:15033 / 15041
页数:9
相关论文
共 56 条
[11]  
Dressel M., 2002, Electrodynamics of solids: optical properties of electrons in matter
[12]  
Edwards D.F., 1985, Handbook of optical constants of solids
[13]   Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells [J].
Ferry, Vivian E. ;
Sweatlock, Luke A. ;
Pacifici, Domenico ;
Atwater, Harry A. .
NANO LETTERS, 2008, 8 (12) :4391-4397
[14]   CONTROLLED NUCLEATION FOR REGULATION OF PARTICLE-SIZE IN MONODISPERSE GOLD SUSPENSIONS [J].
FRENS, G .
NATURE-PHYSICAL SCIENCE, 1973, 241 (105) :20-22
[15]   Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles [J].
Furube, Akihiro ;
Du, Luchao ;
Hara, Kohjiro ;
Katoh, Ryuzi ;
Tachiya, Masanori .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (48) :14852-+
[16]  
Green MA, 2017, PROG PHOTOVOLTAICS, V25, P3, DOI [10.1002/pip.2855, 10.1002/pip.2728, 10.1002/pip.892]
[17]  
Haegglund C, 2008, APPL PHYS LETT, V92
[18]   Plasmon-Induced Photodegradation of Toxic Pollutants with Ag-Agl/Al2O3 under Visible-Light Irradiation [J].
Hu, Chun ;
Peng, Tianwei ;
Hu, Xuexiang ;
Nie, Yulun ;
Zhou, Xuefeng ;
Qu, Jiuhui ;
He, Hong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (02) :857-862
[19]   Efficient Visible-Light-Induced Photocatalytic Activity on Gold-Nanoparticle-Supported Layered Titanate [J].
Ide, Yusuke ;
Matsuoka, Mizuki ;
Ogawa, Makoto .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (47) :16762-16764
[20]   Water Splitting on Composite Plasmonic-Metal/Semiconductor Photoelectrodes: Evidence for Selective Plasmon-Induced Formation of Charge Carriers near the Semiconductor Surface [J].
Ingram, David B. ;
Linic, Suljo .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (14) :5202-5205