Bifurcation to strange nonchaotic attractors

被引:45
作者
Yalcinkaya, T [1 ]
Lai, YC [1 ]
机构
[1] UNIV KANSAS,DEPT MATH,LAWRENCE,KS 66045
来源
PHYSICAL REVIEW E | 1997年 / 56卷 / 02期
关键词
D O I
10.1103/PhysRevE.56.1623
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Strange nonchaotic attractors are attractors that are geometrically strange, but have nonpositive Lyapunov exponents. These attractors occur in regimes of nonzero Lebesgue measure in the parameter space of quasiperiodically driven dissipative dynamical systems. We investigate a route to strange nonchaotic attractors in systems with a symmetric invariant subspace. Assuming there is a quasiperiodic torus in the invariant subspace, we show that the loss of the transverse stability of the tonus can lead to the birth of a strange nonchaotic attractor. A physical phenomenon accompanying this route to strange nonchaotic attractors is an extreme type of intermittency. We expect this route to be physically observable, and we present theoretical arguments and numerical examples with both quasiperiodically driven maps and quasiperiodically driven flows. The transition to chaos from the strange nonchaotic behavior is also studied.
引用
收藏
页码:1623 / 1630
页数:8
相关论文
共 52 条
[11]   STRANGE NONCHAOTIC ATTRACTOR IN A QUASI-PERIODICALLY FORCED CIRCLE MAP [J].
FEUDEL, U ;
KURTHS, J ;
PIKOVSKY, AS .
PHYSICA D, 1995, 88 (3-4) :176-186
[12]   INTERMITTENCY CAUSED BY CHAOTIC MODULATION .2. LYAPUNOV EXPONENT, FRACTAL STRUCTURE AND POWER SPECTRUM [J].
FUJISAKA, H ;
ISHII, H ;
INOUE, M ;
YAMADA, T .
PROGRESS OF THEORETICAL PHYSICS, 1986, 76 (06) :1198-1209
[13]   STABILITY THEORY OF SYNCHRONIZED MOTION IN COUPLED-OSCILLATOR SYSTEMS .4. INSTABILITY OF SYNCHRONIZED CHAOS AND NEW INTERMITTENCY [J].
FUJISAKA, H ;
YAMADA, T .
PROGRESS OF THEORETICAL PHYSICS, 1986, 75 (05) :1087-1104
[14]  
FUJISAKA H, 1985, PROG THEOR PHYS, V74, P919
[15]  
FUJISAKA H, UNPUB
[16]   Intermittent loss of synchronization in coupled chaotic oscillators: Toward a new criterion for high-quality synchronization [J].
Gauthier, DJ ;
Bienfang, JC .
PHYSICAL REVIEW LETTERS, 1996, 77 (09) :1751-1754
[17]   QUASI-PERIODICITY AND TYPES OF ORDER - A STUDY IN ONE DIMENSION [J].
GODRECHE, C ;
LUCK, JM ;
VALLET, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (13) :4483-4499
[18]   STRANGE ATTRACTORS THAT ARE NOT CHAOTIC [J].
GREBOGI, C ;
OTT, E ;
PELIKAN, S ;
YORKE, JA .
PHYSICA D, 1984, 13 (1-2) :261-268
[19]   CHAOTIC ATTRACTORS IN CRISIS [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1982, 48 (22) :1507-1510
[20]   CRISES, SUDDEN CHANGES IN CHAOTIC ATTRACTORS, AND TRANSIENT CHAOS [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICA D, 1983, 7 (1-3) :181-200