Cellulose nanocrystals/polyurethane nanocomposites. Study from the viewpoint of microphase separated structure

被引:115
作者
Rueda, L. [1 ]
Saralegui, A. [1 ]
Fernandez d'Arlas, B. [1 ]
Zhou, Q. [2 ,3 ]
Berglund, L. A. [2 ,4 ]
Corcuera, M. A. [1 ]
Mondragon, I. [1 ]
Eceiza, A. [1 ]
机构
[1] Univ Basque Country, Polytech Sch, Dept Chem & Environm Engn, Mat Technol Grp, Donostia San Sebastian 20018, Spain
[2] Royal Inst Technol, Dept Fibre & Polymer Technol, SE-10044 Stockholm, Sweden
[3] AlbaNova Univ Ctr, Royal Inst Technol, Sch Biotechnol, SE-10691 Stockholm, Sweden
[4] Royal Inst Technol, Wallenberg Wood Sci Ctr, SE-10044 Stockholm, Sweden
关键词
Cellulose nanocrystals; Polyurethane; Hard and soft segments; Atomic force microscopy; Crystallization; MICROCRYSTALLINE CELLULOSE; POLYURETHANE; WHISKERS; BEHAVIOR; NANOCRYSTALS; NANOWHISKERS; MORPHOLOGY;
D O I
10.1016/j.carbpol.2012.09.093
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Cellulose nanocrystals (CNC) successfully obtained from microcrystalline cellulose (MCC) were dispersed in a thermoplastic polyurethane as matrix. Nanocomposites containing 1.5.5. 10 and 30 wt% CNC were prepared by solvent casting procedure and properties of the resulting films were evaluated from the viewpoint of polyurethane microphase separated structure, soft and hard domains. CNC were effectively dispersed in the segmented thermoplastic elastomeric polyurethane (STPUE) matrix due to the favorable matrix-nanocrystals interactions through hydrogen bonding. Cellulose nanocrystals interacted with both soft and hard segments, enhancing stiffness and stability versus temperature of the nanocomposites. Thermal and mechanical properties of STPUE/CNC nanocomposites have been associated to the generated morphologies investigated by AFM images. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:751 / 757
页数:7
相关论文
共 41 条
[1]   Characterization of nanocellulose-reinforced shape memory polyurethanes [J].
Auad, Maria L. ;
Contos, Vasili S. ;
Nutt, Steve ;
Aranguren, Mirta I. ;
Marcovich, Norma E. .
POLYMER INTERNATIONAL, 2008, 57 (04) :651-659
[2]   Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions [J].
Beck-Candanedo, S ;
Roman, M ;
Gray, DG .
BIOMACROMOLECULES, 2005, 6 (02) :1048-1054
[3]  
Berglund L, 2005, NATURAL FIBERS, BIOPOLYMERS, AND BIOCOMPOSITES, P807
[4]   Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis [J].
Bondeson, D ;
Mathew, A ;
Oksman, K .
CELLULOSE, 2006, 13 (02) :171-180
[5]   One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites [J].
Cao, Xiaodong ;
Habibi, Youssef ;
Lucia, Lucian A. .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (38) :7137-7145
[6]   Polymer Nanocomposites with Nanowhiskers Isolated from Microcrystalline Cellulose [J].
Capadona, Jeffrey R. ;
Shanmuganathan, Kadhiravan ;
Trittschuh, Stephanie ;
Seidel, Scott ;
Rowan, Stuart J. ;
Weder, Christoph .
BIOMACROMOLECULES, 2009, 10 (04) :712-716
[7]  
Chazeau L, 1999, J POLYM SCI POL PHYS, V37, P2151, DOI 10.1002/(SICI)1099-0488(19990815)37:16<2151::AID-POLB17>3.0.CO
[8]  
2-V
[9]   Studies on the first DSC endotherm of polyurethane hard segment based on 4,4′-diphenylmethane diisocyanate and 1,4-butanediol [J].
Chen, TK ;
Shieh, TS ;
Chui, JY .
MACROMOLECULES, 1998, 31 (04) :1312-1320
[10]   SYNTHESIS AND PROPERTIES OF POLYURETHANES BASED ON POLYOLEFIN .1. RIGID POLYURETHANES AND AMORPHOUS SEGMENTED POLYURETHANES PREPARED IN POLAR-SOLVENTS UNDER HOMOGENEOUS CONDITIONS [J].
CUVE, L ;
PASCAULT, JP ;
BOITEUX, G ;
SEYTRE, G .
POLYMER, 1991, 32 (02) :343-352