Pcf11 is a termination factor in Drosophila that dismantles the elongation complex by bridging the CTD of RNA polymerase II to the nascent transcript

被引:77
作者
Zhang, ZQ [1 ]
Gilmour, DS [1 ]
机构
[1] Penn State Univ, Ctr Gene Regulat, Dept Biochem & Mol Biol, University Pk, PA 16802 USA
关键词
D O I
10.1016/j.molcel.2005.11.002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The mechanism by which Pol II terminates transcription in metazoans is not understood. We show that Pcf11 is directly involved in termination in Drosophila. dPcf11 is concentrated at the 3' end of the hsp70 gene in cells, and depletion of dPcf11 with RNAi causes Pol II to readthrough the normal region of termination. dPcf11 also localizes to most transcribed loci on polytene chromosomes. Biochemical analysis reveals that dPcf11 dismantles elongation complexes by a CTD-dependent but nucleotide-independent mechanism and that dPcf11 forms a bridge between the CTD and RNA. This bridge appears to be crucial because an anti-CTD antibody, which also dismantles the elongation complex, is found to bridge the CTD to RNA. dPcf11 was observed to inhibit transcription at low, but not high, nucleotide levels, suggesting that dPcf11 dismantles paused elongation complexes. These results provide a biochemical basis for the dependency of termination on pausing and the CTD in metazoans.
引用
收藏
页码:65 / 74
页数:10
相关论文
共 48 条
[1]   Efficient release from promoter-proximal stall sites requires transcript cleavage factor TFIIS [J].
Adelman, K ;
Marr, MT ;
Werner, J ;
Saunders, A ;
Ni, ZY ;
Andrulis, ED ;
Lis, JT .
MOLECULAR CELL, 2005, 17 (01) :103-112
[2]   Phosphorylation of serine 2 within the RNA polymerase IIC-terminal domain couples transcription and 3′ end processing [J].
Ahn, SH ;
Kim, M ;
Buratowski, S .
MOLECULAR CELL, 2004, 13 (01) :67-76
[3]   A role for chromatin remodeling in transcriptional termination by RNA polymerase II [J].
Alén, C ;
Kent, NA ;
Jones, HS ;
O'Sullivan, J ;
Aranda, A ;
Proudfoot, NJ .
MOLECULAR CELL, 2002, 10 (06) :1441-1452
[4]   INDUCTION OF GENE ACTIVITY IN DROSOPHILA BY HEAT SHOCK [J].
ASHBURNER, M ;
BONNER, JJ .
CELL, 1979, 17 (02) :241-254
[5]   MAZ-DEPENDENT TERMINATION BETWEEN CLOSELY SPACED HUMAN-COMPLEMENT GENES [J].
ASHFIELD, R ;
PATEL, AJ ;
BOSSONE, SA ;
BROWN, H ;
CAMPBELL, RD ;
MARCU, KB ;
PROUDFOOT, NJ .
EMBO JOURNAL, 1994, 13 (23) :5656-5667
[6]   Cleavage/polyadenylation factor IA associates with the carboxyl-terminal domain of RNA polymerase II in Saccharomyces cerevisiae [J].
Barillà, D ;
Lee, BA ;
Proudfoot, NJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (02) :445-450
[7]   Transcription factor and polymerase recruitment, modification, and movement on dhsp70 in vivo in the minutes following heat shock [J].
Boehm, AK ;
Saunders, A ;
Werner, J ;
Lis, JT .
MOLECULAR AND CELLULAR BIOLOGY, 2003, 23 (21) :7628-7637
[8]   Connections between mRNA 3′ end processing and transcription termination [J].
Buratowski, S .
CURRENT OPINION IN CELL BIOLOGY, 2005, 17 (03) :257-261
[9]   The CTD code [J].
Buratowski, S .
NATURE STRUCTURAL BIOLOGY, 2003, 10 (09) :679-680
[10]   Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways [J].
Clemens, JC ;
Worby, CA ;
Simonson-Leff, N ;
Muda, M ;
Maehama, T ;
Hemmings, BA ;
Dixon, JE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (12) :6499-6503