Hermitian conformal classes and almost Kahler structures on 4-manifolds

被引:12
作者
Apostolov, V
Draghici, T
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, BU-1113 Sofia, Bulgaria
[2] NE Illinois Univ, Dept Math, Chicago, IL 60625 USA
关键词
almost Kahler structures; Hermitian conformal classes; Yamabe constants; symplectic forms;
D O I
10.1016/S0926-2245(99)00033-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that on most compact complex surfaces which admit symplectic forms, each Hermitian conformal class contains almost Kahler metrics. Results about the number of symplectic forms compatible to a given metric are obtained. As applications, alternative proofs for results of LeBrun on the Yamabe constants of Hermitian conformal classes are given, as well as some answers to a question of Blair about the isometries of almost Kahler metrics.
引用
收藏
页码:179 / 195
页数:17
相关论文
共 28 条
[1]  
Alekseevsky D. V., 1990, Journal of Geometry and Physics, V7, P21, DOI 10.1016/0393-0440(90)90018-X
[2]   Bihermitian structures on complex surfaces [J].
Apostolov, V ;
Gauduchon, P ;
Grantcharov, G .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1999, 79 :414-428
[3]   Compact self-dual Hermitian surfaces [J].
Apostolov, V ;
Davidov, J ;
Muskarov, O .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (08) :3051-3063
[4]   The Riemannian Goldberg-Sachs theorem [J].
Apostolov, V ;
Gauduchon, P .
INTERNATIONAL JOURNAL OF MATHEMATICS, 1997, 8 (04) :421-439
[5]  
ARMSTRONG J, ALMOST KAHLER EINSTE
[6]   COMPACT HERMITIAN-MANIFOLDS OF CONSTANT HOLOMORPHIC SECTIONAL CURVATURE [J].
BALAS, A .
MATHEMATISCHE ZEITSCHRIFT, 1985, 189 (02) :193-210
[7]   Seiberg-Witten equations on a non-Kahler complex surface [J].
Biquard, O .
COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 1998, 6 (01) :173-197
[8]  
BLAIR D, 1989, DIFFERENTIAL GEOMETR, P49
[9]  
Blair D. E, 1992, P 3 C GEOM THESS ION, P79
[10]   THE 1-FORM OF TORSION OF A COMPACT HERMITIAN MANIFOLD [J].
GAUDUCHON, P .
MATHEMATISCHE ANNALEN, 1984, 267 (04) :495-518