Seiberg-Witten equations on a non-Kahler complex surface

被引:13
作者
Biquard, O [1 ]
机构
[1] Ecole Polytech, CMAT, URA 169 CNRS, F-91128 Palaiseau, France
关键词
D O I
10.4310/CAG.1998.v6.n1.a6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Seiberg-Witten invariants of non Kahler complex surfaces with b(2)(+) > 0. They are all elliptic surfaces of nonnegative Kodaira dimension. We prove that they are simple type and we calculate the basic classes and the multiplicities. We deduce that non Kahler properly elliptic surfaces do not carry a symplectic structure.
引用
收藏
页码:173 / 197
页数:25
相关论文
共 22 条
[1]  
Barth W., 1984, COMPACT COMPLEX SURF
[2]  
Berline N, 1992, HEAT KERNELS DIRAC O
[3]   VORTICES IN HOLOMORPHIC LINE BUNDLES OVER CLOSED KAHLER-MANIFOLDS [J].
BRADLOW, SB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 135 (01) :1-17
[4]  
Brussee R., 1996, NEW YORK J MATH, V2, P103
[5]   HERMITIAN-EINSTEIN CONNECTIONS AND STABLE VECTOR-BUNDLES OVER COMPACT COMPLEX-SURFACES [J].
BUCHDAHL, NP .
MATHEMATISCHE ANNALEN, 1988, 280 (04) :625-648
[6]  
Friedman R, 1997, J ALGEBRAIC GEOM, V6, P445
[7]  
Friedman R., 1994, Smooth Four-Manifolds and Complex Surfaces
[8]  
FRIEDMAN R, IN PRESS COMM ANAL G
[9]   INVARIANT CONNECTIONS AND VORTICES [J].
GARCIAPRADA, O .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 156 (03) :527-546
[10]  
Gauduchon P, 1997, B UNIONE MAT ITAL, V11B, P257