A strategy for mass production of self-assembled nitrogen-doped graphene as catalytic materials

被引:46
作者
He, Chunyong [1 ]
Li, Zesheng [1 ]
Cai, Maolin [5 ]
Cai, Mei [2 ]
Wang, Jian-Qiang [3 ]
Tian, Zhiqun [4 ]
Zhang, Xin [5 ]
Shen, Pei Kang [1 ]
机构
[1] Sun Yat Sen Univ, Sch Phys & Engn, State Key Lab Optoelect Mat & Technol, Guangdong Prov Key Lab Low Carbon Chem & Energy C, Guangzhou 510275, Guangdong, Peoples R China
[2] Gen Motors Res & Dev Ctr, Warren, MI 48090 USA
[3] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201204, Peoples R China
[4] Inst Chem & Engn Sci, Singapore 627833, Singapore
[5] Shantou Univ, Fac Sci, Dept Chem, Shantou 515063, Peoples R China
基金
中国国家自然科学基金;
关键词
METAL-FREE ELECTROCATALYSTS; EPITAXIAL GRAPHENE; ELASTIC PROPERTIES; SINGLE-LAYER; CARBON; REDUCTION; GROWTH; OXIDE; EXFOLIATION; ACTIVATION;
D O I
10.1039/c2ta00807f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The mass production of graphene and nitrogen-doped (N-doped) graphene constitutes one of the main obstacles for the application of these materials. We demonstrate a novel resin-based methodology for large-scale self-assembly of the N-doped graphene. The N-doped graphene is readily obtained by using a precursor containing nitrogen and metal ions. The N-doped graphene is characterized by Raman, AFM, TEM, SEM, synchronic radiation and XPS measurements. The electrochemical performance of the catalyst made with such materials is investigated by a rotating ring-disk electrode (RRDE) system. The results reveal that the N-doped graphene is a selective catalyst and possesses an outstanding electrocatalytic activity, long-term stability, and good methanol and CO tolerance for oxygen reduction reaction (ORR).
引用
收藏
页码:1401 / 1406
页数:6
相关论文
共 58 条
[1]  
Banhart F, 2011, ACS NANO, V5, P26, DOI [10.1021/nn102598m, 10.1016/B978-0-08-102053-1.00005-3]
[2]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[3]   Chemical functionalization of graphene [J].
Boukhvalov, D. W. ;
Katsnelson, M. I. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (34)
[4]   Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures [J].
Britnell, L. ;
Gorbachev, R. V. ;
Jalil, R. ;
Belle, B. D. ;
Schedin, F. ;
Mishchenko, A. ;
Georgiou, T. ;
Katsnelson, M. I. ;
Eaves, L. ;
Morozov, S. V. ;
Peres, N. M. R. ;
Leist, J. ;
Geim, A. K. ;
Novoselov, K. S. ;
Ponomarenko, L. A. .
SCIENCE, 2012, 335 (6071) :947-950
[5]   Electronic structure of heavily doped graphene: The role of foreign atom states [J].
Calandra, Matteo ;
Mauri, Francesco .
PHYSICAL REVIEW B, 2007, 76 (16)
[6]   Geometrical approach for the study of G′ band in the Raman spectrum of monolayer graphene, bilayer graphene, and bulk graphite [J].
Cancado, L. G. ;
Reina, A. ;
Kong, J. ;
Dresselhaus, M. S. .
PHYSICAL REVIEW B, 2008, 77 (24)
[7]   Edge-functionalized and substitutionally doped graphene nanoribbons:: Electronic and spin properties [J].
Cervantes-Sodi, F. ;
Csanyi, G. ;
Piscanec, S. ;
Ferrari, A. C. .
PHYSICAL REVIEW B, 2008, 77 (16)
[8]  
Chen SS, 2012, NAT MATER, V11, P203, DOI [10.1038/NMAT3207, 10.1038/nmat3207]
[9]   Intrinsic Response of Graphene Vapor Sensors [J].
Dan, Yaping ;
Lu, Ye ;
Kybert, Nicholas J. ;
Luo, Zhengtang ;
Johnson, A. T. Charlie .
NANO LETTERS, 2009, 9 (04) :1472-1475
[10]   Electronic and structural properties of two-dimensional carbon nitride graphenes [J].
Deifallah, Malek ;
McMillan, Paul F. ;
Cora, Furio .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (14) :5447-5453