Germanium-tin alloy nanocrystals for high-performance lithium ion batteries

被引:66
作者
Cho, Yong Jae [1 ]
Kim, Chang Hyun [1 ]
Im, Hyung Soon [1 ]
Myung, Yoon [1 ]
Kim, Han Sung [1 ]
Back, Seung Hyuk [1 ]
Lim, Young Rok [1 ]
Jung, Chan Su [1 ]
Jang, Dong Myung [1 ]
Park, Jeunghee [1 ]
Lim, Sang Hoo [2 ]
Cha, Eun Hee [2 ]
Bae, Ki Yoon [3 ]
Song, Min Seob [3 ]
Cho, Won Il [3 ]
机构
[1] Korea Univ, Dept Chem, Jochiwon 339700, South Korea
[2] Hoseo Univ, Dept Liberal Art & Literature, Chungnam 336795, South Korea
[3] Korea Inst Sci & Technol, Ctr Energy Convergence, Seoul 136791, South Korea
关键词
HIGH-CAPACITY; ANODE MATERIAL; GE; LI; SN; NANOPARTICLES; NANOWIRES; COMPOSITE; NANOCOMPOSITE; ELECTRODES;
D O I
10.1039/c3cp51366a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Germanium-tin (Ge1-xSnx) alloy nanocrystals were synthesized using a gas-phase laser photolysis reaction of tetramethyl germanium and tetramethyl tin. A composition tuning was achieved using the partial pressure of precursors in a closed reactor. For x < 0.1, cubic phase alloy nanocrystals were exclusively produced without separation of the tetragonal phase Sn metal. In the range of x = 0.1-0.4, unique Ge1-xSnx-Sn alloy-metal hetero-junction nanocrystals were synthesized, where the Sn metal domain becomes dominant with x. Thin graphitic carbon layers usually sheathed the nanocrystals. We investigated the composition-dependent electrochemical properties of these nanocrystals as anode materials of lithium ion batteries. Incorporation of Sn (x = 0.05) significantly increased the capacities (1010 mA h g(-1) after 50 cycles) and rate capabilities, which promises excellent electrode materials for the development of high-performance lithium batteries.
引用
收藏
页码:11691 / 11695
页数:5
相关论文
共 38 条
[1]   Ge-Sn semiconductors for band-gap and lattice engineering [J].
Bauer, M ;
Taraci, J ;
Tolle, J ;
Chizmeshya, AVG ;
Zollner, S ;
Smith, DJ ;
Menendez, J ;
Hu, CW ;
Kouvetakis, J .
APPLIED PHYSICS LETTERS, 2002, 81 (16) :2992-2994
[2]   The electrochemical reaction of Li with amorphous Si-Sn alloys [J].
Beaulieu, LY ;
Hewitt, KC ;
Turner, RL ;
Bonakdarpour, A ;
Abdo, AA ;
Christensen, L ;
Eberman, KW ;
Krause, JL ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (02) :A149-A156
[3]   High capacity Li ion battery anodes using Ge nanowires [J].
Chan, Candace K. ;
Zhang, Xiao Feng ;
Cui, Yi .
NANO LETTERS, 2008, 8 (01) :307-309
[4]   Electrochemical Lithiation of Graphene-Supported Silicon and Germanium for Rechargeable Batteries [J].
Chockla, Aaron M. ;
Panthani, Matthew G. ;
Holmberg, Vincent C. ;
Hessel, Colin M. ;
Reid, Dariya K. ;
Bogart, Timothy D. ;
Harris, Justin T. ;
Mullins, C. Buddie ;
Korgel, Brian A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (22) :11917-11923
[5]   Determination of the optical energy gap of Ge1-xSnx alloys with 0&lt;x&lt;0.14 [J].
de Guevara, HPL ;
Rodríguez, AG ;
Navarro-Contreras, H ;
Vidal, MA .
APPLIED PHYSICS LETTERS, 2004, 84 (22) :4532-4534
[6]   MOBILITY OF IMPURITY IONS IN GERMANIUM AND SILICON [J].
FULLER, CS ;
SEVERIENS, JC .
PHYSICAL REVIEW, 1954, 96 (01) :21-24
[7]   Template-Free Preparation of Crystalline Ge Nanowire Film Electrodes via an Electrochemical Liquid-Liquid-Solid Process in Water at Ambient Pressure and Temperature for Energy Storage [J].
Gu, Junsi ;
Collins, Sean M. ;
Carim, Azhar I. ;
Hao, Xiaoguang ;
Bartlett, Bart M. ;
Maldonado, Stephen .
NANO LETTERS, 2012, 12 (09) :4617-4623
[8]   Interband transitions in SnxGe1-x alloys [J].
He, G ;
Atwater, HA .
PHYSICAL REVIEW LETTERS, 1997, 79 (10) :1937-1940
[9]   Electrospun Core-Shell Fibers for Robust Silicon Nanoparticle-Based Lithium Ion Battery Anodes [J].
Hwang, Tae Hoon ;
Lee, Yong Min ;
Kong, Byung-Seon ;
Seo, Jin-Seok ;
Choi, Jang Wook .
NANO LETTERS, 2012, 12 (02) :802-807
[10]   ELECTRONIC-PROPERTIES OF METASTABLE GEXSN1-X ALLOYS [J].
JENKINS, DW ;
DOW, JD .
PHYSICAL REVIEW B, 1987, 36 (15) :7994-8000