Seasonal variation of CCN concentrations and aerosol activation properties in boreal forest

被引:96
作者
Sihto, S. -L. [1 ]
Mikkila, J. [1 ,2 ]
Vanhanen, J. [1 ,2 ]
Ehn, M. [1 ]
Liao, L. [1 ]
Lehtipalo, K. [1 ,2 ]
Aalto, P. P. [1 ]
Duplissy, J. [1 ,3 ]
Petaja, T. [1 ]
Kerminen, V. -M. [1 ,4 ]
Boy, M. [1 ]
Kulmala, M. [1 ]
机构
[1] Univ Helsinki, Dept Phys, FIN-00014 Helsinki, Finland
[2] AirModus Oy, Helsinki 00560, Finland
[3] CERN, Phys Dept, CH-1211 Geneva, Switzerland
[4] Finnish Meteorol Inst, Helsinki 00101, Finland
基金
芬兰科学院;
关键词
CLOUD CONDENSATION NUCLEI; HYGROSCOPIC PROPERTIES; PARTICLE FORMATION; SIZE DISTRIBUTION; SUBMICROMETER AEROSOL; ORGANIC AEROSOLS; RAIN-FOREST; GROWTH; NUCLEATION; CLOSURE;
D O I
10.5194/acp-11-13269-2011
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
As a part of EUCAARI activities, the annual cycle of cloud condensation nuclei (CCN) concentrations and critical diameter for cloud droplet activation as a function of supersaturation were measured using a CCN counter and a HTDMA (hygroscopicity tandem differential mobility analyzer) at SMEAR II station, Hyytiala, Finland. The critical diameters for CCN activation were estimated from (i) the measured CCN concentration and particle size distribution data, and (ii) the hygroscopic growth factors by applying kappa - Kohler theory, in both cases assuming an internally mixed aerosol. The critical diameters derived by these two methods were in good agreement with each other. The effect of new particle formation on the diurnal variation of CCN concentration and critical diameters was studied. New particle formation was observed to increase the CCN concentrations by 70-110 %, depending on the supersaturation level. The average value for the kappa - parameter determined from hygroscopicity measurements was kappa = 0.18 and it predicted well the CCN activation in boreal forest conditions in Hyytiala. The derived critical diameters and kappa - parameter confirm earlier findings with other methods, that aerosol particles at CCN sizes in Hyytiala are mostly organic, but contain also more hygrosopic, probably inorganic salts like ammonium sulphate, making the particles more CCN active than pure secondary organic aerosol.
引用
收藏
页码:13269 / 13285
页数:17
相关论文
共 76 条
[31]   A look at aerosol formation using data mining techniques [J].
Hyvönen, S ;
Junninen, H ;
Laakso, L ;
Dal Maso, M ;
Grönholm, T ;
Bonn, B ;
Keronen, P ;
Aalto, P ;
Hiltunen, V ;
Pohja, T ;
Launiainen, S ;
Hari, P ;
Mannila, H ;
Kulmala, M .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2005, 5 :3345-3356
[32]   Evolution of Organic Aerosols in the Atmosphere [J].
Jimenez, J. L. ;
Canagaratna, M. R. ;
Donahue, N. M. ;
Prevot, A. S. H. ;
Zhang, Q. ;
Kroll, J. H. ;
DeCarlo, P. F. ;
Allan, J. D. ;
Coe, H. ;
Ng, N. L. ;
Aiken, A. C. ;
Docherty, K. S. ;
Ulbrich, I. M. ;
Grieshop, A. P. ;
Robinson, A. L. ;
Duplissy, J. ;
Smith, J. D. ;
Wilson, K. R. ;
Lanz, V. A. ;
Hueglin, C. ;
Sun, Y. L. ;
Tian, J. ;
Laaksonen, A. ;
Raatikainen, T. ;
Rautiainen, J. ;
Vaattovaara, P. ;
Ehn, M. ;
Kulmala, M. ;
Tomlinson, J. M. ;
Collins, D. R. ;
Cubison, M. J. ;
Dunlea, E. J. ;
Huffman, J. A. ;
Onasch, T. B. ;
Alfarra, M. R. ;
Williams, P. I. ;
Bower, K. ;
Kondo, Y. ;
Schneider, J. ;
Drewnick, F. ;
Borrmann, S. ;
Weimer, S. ;
Demerjian, K. ;
Salcedo, D. ;
Cottrell, L. ;
Griffin, R. ;
Takami, A. ;
Miyoshi, T. ;
Hatakeyama, S. ;
Shimono, A. .
SCIENCE, 2009, 326 (5959) :1525-1529
[33]   Influence of gas-to-particle partitioning on the hygroscopic and droplet activation behaviour of α-pinene secondary organic aerosol [J].
Juranyi, Zsofia ;
Gysel, Martin ;
Duplissy, Jonathan ;
Weingartner, Ernest ;
Tritscher, Torsten ;
Dommen, Josef ;
Henning, Silvia ;
Ziese, Markus ;
Kiselev, Alexej ;
Stratmann, Frank ;
George, Ingrid ;
Baltensperger, Urs .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (36) :8091-8097
[34]   Subarctic atmospheric aerosol composition: 3. Measured and modeled properties of cloud condensation nuclei [J].
Kammermann, Lukas ;
Gysel, Martin ;
Weingartner, Ernest ;
Herich, Hanna ;
Cziczo, Daniel J. ;
Holst, Thomas ;
Svenningsson, Birgitta ;
Arneth, Almut ;
Baltensperger, Urs .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2010, 115
[35]   Aerosol nucleation and its role for clouds and Earth's radiative forcing in the aerosol-climate model ECHAM5-HAM [J].
Kazil, J. ;
Stier, P. ;
Zhang, K. ;
Quaas, J. ;
Kinne, S. ;
O'Donnell, D. ;
Rast, S. ;
Esch, M. ;
Ferrachat, S. ;
Lohmann, U. ;
Feichter, J. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (22) :10733-10752
[36]   Direct observational evidence linking atmospheric aerosol formation and cloud droplet activation [J].
Kerminen, VM ;
Lihavainen, H ;
Komppula, M ;
Viisanen, Y ;
Kulmala, M .
GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (14) :1-4
[37]   The nucleus in and the growth of hygroscopic droplets. [J].
Kohler, H .
TRANSACTIONS OF THE FARADAY SOCIETY, 1936, 32 (02) :1152-1161
[38]   Determination of cloud condensation nuclei production from measured new particle formation events [J].
Kuang, C. ;
McMurry, P. H. ;
McCormick, A. V. .
GEOPHYSICAL RESEARCH LETTERS, 2009, 36
[39]   Introduction: European Integrated Project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) - integrating aerosol research from nano to global scales [J].
Kulmala, M. ;
Asmi, A. ;
Lappalainen, H. K. ;
Carslaw, K. S. ;
Poeschl, U. ;
Baltensperger, U. ;
Hov, O. ;
Brenquier, J. -L. ;
Pandis, S. N. ;
Facchini, M. C. ;
Hansson, H. -C. ;
Wiedensohler, A. ;
O'Dowd, C. D. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (08) :2825-2841
[40]  
Kulmala M, 2001, TELLUS B, V53, P324, DOI 10.1034/j.1600-0889.2001.d01-24.x