Gated-Controlled Rectification of a Self-Assembled Monolayer-Based Transistor

被引:37
作者
Mentovich, Elad D. [1 ,2 ]
Rosenberg-Shraga, Natalie [1 ]
Kalifa, Itsik [2 ]
Gozin, Michael [1 ]
Mujica, Vladimiro [3 ,4 ,5 ]
Hansen, Thorsten [6 ]
Richter, Shachar [1 ,2 ]
机构
[1] Tel Aviv Univ, Sch Chem, IL-69978 Tel Aviv, Israel
[2] Tel Aviv Univ, Univ Ctr Nanosci & Nanotechnol, IL-69978 Tel Aviv, Israel
[3] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA
[4] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[5] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA
[6] Lund Univ, Dept Chem Phys, SE-21000 Lund, Sweden
基金
以色列科学基金会;
关键词
NEGATIVE-DIFFERENTIAL-RESISTANCE; CURRENT-VOLTAGE CHARACTERISTICS; MOLECULAR-TRANSPORT JUNCTIONS; ELECTRON-TRANSPORT; CHARGE-TRANSPORT; COULOMB-BLOCKADE; FABRICATION; DEPENDENCE; WIRES;
D O I
10.1021/jp311875g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A vertical gate symmetrical molecular transistor is demonstrated. It includes self assembled monolayer of ferrocene molecules chemically bonded to be a flat Au source and Au nanoparticles drain electrodes while gated with the central gate electrode. Using this configuration, we show that negative differential resistance, symmetrical behavior, and rectification effects can be tuned by controlling the gate voltage. The I-V curves shift from symmetric to strongly rectifying over a gate voltage range of a few tenths of volts around a threshold value where the junction behaves symmetrically. This is due to charging of the nanoparticle contact, which modifies the spatial profile of the voltage across the junction, a fact that we have included in a simple theoretical model that explains our experimental results quite well. Our device design affords a new way to fine-tune the rectification of molecular devices in a way that does not necessarily involve the Coulomb charging of the wire.
引用
收藏
页码:8468 / 8474
页数:7
相关论文
共 55 条
[11]  
Li XL, 2007, J AM CHEM SOC, V129, P11535
[12]   Controlling charge transport in single molecules using electrochemical gate [J].
Li, XL ;
Xu, BQ ;
Xiao, XY ;
Yang, XM ;
Zang, L ;
Tao, NJ .
FARADAY DISCUSSIONS, 2006, 131 :111-120
[13]   Molecular transport junctions: Clearing mists [J].
Lindsay, Stuart M. ;
Ratner, Mark A. .
ADVANCED MATERIALS, 2007, 19 (01) :23-31
[14]   Organometallic spintronics: Dicobaltocene switch [J].
Liu, R ;
Ke, SH ;
Baranger, HU ;
Yang, WT .
NANO LETTERS, 2005, 5 (10) :1959-1962
[15]   Doped Biomolecules in Miniaturized Electric Junctions [J].
Mentovich, Elad ;
Belgorodsky, Bogdan ;
Gozin, Michael ;
Richter, Shachar ;
Cohen, Hagai .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (20) :8468-8473
[16]   Multipeak negative-differential-resistance molecular device [J].
Mentovich, Elad D. ;
Kalifa, Itshak ;
Tsukernik, Alexander ;
Caster, Ariel ;
Rosenberg-Shraga, Natalie ;
Marom, Hanit ;
Gozin, Michael ;
Richter, Shachar .
SMALL, 2008, 4 (01) :55-58
[17]   Post-complementary metal-oxide-semiconductor vertical and molecular transistors: A platform for molecular electronics [J].
Mentovich, Elad D. ;
Richter, Shachar .
APPLIED PHYSICS LETTERS, 2011, 99 (03)
[18]   Resolving the Mystery of the Elusive Peak: Negative Differential Resistance in Redox Proteins [J].
Mentovich, Elad D. ;
Belgorodsky, Bogdan ;
Richter, Shachar .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (10) :1125-1128
[19]   The Role of Leakage Currents and the Gate Oxide Width in Molecular Transistors [J].
Mentovich, Elad D. ;
Richter, Shachar .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2010, 49 (01)
[20]   1-Nanometer-Sized Active-Channel Molecular Quantum-Dot Transistor [J].
Mentovich, Elad D. ;
Belgorodsky, Bogdan ;
Kalifa, Itsik ;
Richter, Shachar .
ADVANCED MATERIALS, 2010, 22 (19) :2182-+