Fixed points of quantum gravity

被引:379
作者
Litim, DF [1 ]
机构
[1] CERN, Div Theory, CH-1211 Geneva 23, Switzerland
[2] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England
关键词
D O I
10.1103/PhysRevLett.92.201301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Euclidean quantum gravity is studied with renormalization group methods. Analytical results for a nontrivial ultraviolet fixed point are found for arbitrary dimensions and gauge fixing parameters in the Einstein-Hilbert truncation. Implications for quantum gravity in four dimensions are discussed.
引用
收藏
页码:201301 / 1
页数:4
相关论文
共 44 条
[11]   Renormalizability of gauge theories in extra dimensions [J].
Gies, H .
PHYSICAL REVIEW D, 2003, 68 (08)
[12]   Running coupling in Yang-Mills theory: A flow equation study [J].
Gies, H .
PHYSICAL REVIEW D, 2002, 66 (02)
[13]   Gravitational scaling dimensions [J].
Hamber, HW .
PHYSICAL REVIEW D, 2000, 61 (12)
[14]   PHASES OF 4-DIMENSIONAL SIMPLICIAL QUANTUM-GRAVITY [J].
HAMBER, HW .
PHYSICAL REVIEW D, 1992, 45 (02) :507-512
[15]   Flow equation of quantum Einstein gravity in a higher-derivative truncation [J].
Lauscher, O ;
Reuter, M .
PHYSICAL REVIEW D, 2002, 66 (02)
[16]   Ultraviolet fixed point and generalized flow equation of quantum gravity [J].
Lauscher, O ;
Reuter, M .
PHYSICAL REVIEW D, 2002, 65 (02)
[17]   Is quantum Einstein gravity nonperturbatively renormalizable? [J].
Lauscher, O ;
Reuter, M .
CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (03) :483-492
[18]  
Litim D. F., HEPTH9901063
[19]   Optimisation of the exact renormalisation group [J].
Litim, DF .
PHYSICS LETTERS B, 2000, 486 (1-2) :92-99
[20]   Flow equations for Yang-Mills theories in general axial gauges [J].
Litim, DF ;
Pawlowski, JM .
PHYSICS LETTERS B, 1998, 435 (1-2) :181-188