Quantitative criteria for native energetic heterogeneity influences in the prediction of protein folding kinetics

被引:61
作者
Cho, Samuel S. [1 ,2 ]
Levy, Yaakov [1 ,3 ]
Wolynes, Peter G. [1 ,2 ,3 ]
机构
[1] Univ Calif San Diego, Ctr Theoret Biol Phys, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
energy landscape theory; random-field Ising model; native topology-based models; SECONDARY STRUCTURE FORMATION; TRANSITION-STATE; NONNATIVE INTERACTIONS; STATISTICAL-MECHANICS; CONTACT ORDER; LANDSCAPE; TOPOLOGY; FUNNELS; SIMULATION; FAMILY;
D O I
10.1073/pnas.0810218105
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Energy landscape theory requires that the protein-folding mechanism is generally globally directed or funneled toward the native state. The collective nature of transition state ensembles further suggests that sufficient averaging of the native interactions can occur so that the knowledge of the native topology may suffice for predicting the mechanism. Nevertheless, while simple homogeneously weighted native topology-based models predict the folding mechanisms for many proteins, for other proteins knowledge of the native topology, by itself, seems not to suffice in determining the folding mechanism. Simulations of proteins with differing topologies reveal that the failure of homogeneously weighted topology-based models can, however, be completely understood within the framework of a funneled energy landscape and can be quantified by comparing the fluctuation of entropy cost for forming contacts to the expected fluctuations in contact energy. To be precise, we find the transition state ensembles of proteins with all-alpha topologies, which are more uniform in the specific entropy cost of contact formation, have transition state ensembles that are more readily perturbed by differences in energetic weights than are the transition state ensembles of proteins with significant amounts of beta-structure, where the specific entropy costs of contact formation are more widely distributed. This behavior is consistent with a random-field Ising model analogy that follows from the free energy functional approach to folding.
引用
收藏
页码:434 / 439
页数:6
相关论文
共 40 条
[1]   INITIAL EVENTS OF PROTEIN FOLDING FROM AN INFORMATION-PROCESSING VIEWPOINT [J].
BOHR, HG ;
WOLYNES, PG .
PHYSICAL REVIEW A, 1992, 46 (08) :5242-5248
[2]   FUNNELS, PATHWAYS, AND THE ENERGY LANDSCAPE OF PROTEIN-FOLDING - A SYNTHESIS [J].
BRYNGELSON, JD ;
ONUCHIC, JN ;
SOCCI, ND ;
WOLYNES, PG .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 1995, 21 (03) :167-195
[3]   SPIN-GLASSES AND THE STATISTICAL-MECHANICS OF PROTEIN FOLDING [J].
BRYNGELSON, JD ;
WOLYNES, PG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (21) :7524-7528
[4]   INTERMEDIATES AND BARRIER CROSSING IN A RANDOM ENERGY-MODEL (WITH APPLICATIONS TO PROTEIN FOLDING) [J].
BRYNGELSON, JD ;
WOLYNES, PG .
JOURNAL OF PHYSICAL CHEMISTRY, 1989, 93 (19) :6902-6915
[5]   The energy landscape of a fast-folding protein mapped by Ala->Gly substitutions [J].
Burton, RE ;
Huang, GS ;
Daugherty, MA ;
Calderone, TL ;
Oas, TG .
NATURE STRUCTURAL BIOLOGY, 1997, 4 (04) :305-310
[6]   Quantifying the roughness on the free energy landscape: Entropic bottlenecks and protein folding rates [J].
Chavez, LL ;
Onuchic, JN ;
Clementi, C .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (27) :8426-8432
[7]  
Chiti F, 1999, NAT STRUCT BIOL, V6, P1005
[8]   Origins of barriers and barrierless folding in BBL [J].
Cho, Samuel S. ;
Weinkam, Patrick ;
Wolynes, Peter G. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (01) :118-123
[9]   P versus Q:: Structural reaction coordinates capture protein folding on smooth landscapes [J].
Cho, SS ;
Levy, Y ;
Wolynes, PG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (03) :586-591
[10]   Topological and energetic factors: What determines the structural details of the transition state ensemble and "en-route" intermediates for protein folding? An investigation for small globular proteins [J].
Clementi, C ;
Nymeyer, H ;
Onuchic, JN .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 298 (05) :937-953