Commercial TMR heads for hard disk drives:: Characterization and extendibility at 300 Gbit/in2

被引:99
作者
Mao, SN [1 ]
Chen, YH
Liu, F
Chen, XF
Xu, B
Lu, PL
Patwari, M
Xi, HW
Chang, C
Miller, B
Menard, D
Pant, B
Loven, J
Duxstad, K
Li, SP
Zhang, ZY
Johnston, A
Lamberton, R
Gubbins, M
McLaughlin, T
Gadbois, J
Ding, J
Cross, B
Xue, S
Ryan, P
机构
[1] Seagate Technol, Recording Head Operat, Minneapolis, MN 55435 USA
[2] Seagate Technol, Fremont, CA 94538 USA
[3] Seagate Technol, Springtown BT48 0BF, Londonderry, North Ireland
[4] Seagate Technol, Longmont, CO 80503 USA
关键词
areal density; disk drives; electrical static discharge (ESD); longitudinal recording; noise; perpendicular recording; reliability; signal-to-noise ratio (SNR); tunneling magnetoresistive (TMR) heads;
D O I
10.1109/TMAG.2005.861788
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Tunneling magnetoresistive (TMR) reading heads at an areal density of 80-100 Gbit/in(2) in a longitudinal magnetic recording mode have for the first time been commercialized for both laptop and desktop Seagate hard disk drive products. The first generation TMR products utilized a bottom TMR stack and an abutted hard bias design. These TMR heads have demonstrated three times the amplitude of comparable giant magnetoresistive (GMR) devices, resulting in a 0.6 decade bit error rate gain over GMR. This has enabled high component and drive yields. Due to the improved thermal dissipation of current-perpendicular-to-plane geometry, TMR runs cooler and has better lifetime performance, and has demonstrated the similar electrical static discharge robustness as GMR. TMR has demonstrated equivalent or better process and wafer yields compared to GMR. The TMR heads is proven to be a mature and capable reader technology. Using the same TMR head design in conjunction with perpendicular recording, 274 Gbit/in(2) has been demonstrated. Advanced design can reach 311 Gbit/in(2).
引用
收藏
页码:97 / 102
页数:6
相关论文
共 30 条
[1]   Fabrication and electric properties of lapped type of TMR heads for ∼50 Gb/in2 and beyond [J].
Araki, S ;
Sato, K ;
Kagami, T ;
Saruki, S ;
Uesugi, T ;
Kasahara, N ;
Kuwashima, T ;
Ohta, N ;
Sun, J ;
Nagai, K ;
Li, S ;
Hachisuka, N ;
Hatate, H ;
Kagotani, T ;
Takahashi, N ;
Ueda, K ;
Matsuzaki, M .
IEEE TRANSACTIONS ON MAGNETICS, 2002, 38 (01) :72-77
[2]   Degradation of GMR and TMR recording heads using very-short-duration ESD transients [J].
Baril, L ;
Nichols, M ;
Wallash, A .
IEEE TRANSACTIONS ON MAGNETICS, 2002, 38 (05) :2283-2285
[3]   TUNNELING CONDUCTANCE OF ASYMMETRICAL BARRIERS [J].
BRINKMAN, WF ;
DYNES, RC ;
ROWELL, JM .
JOURNAL OF APPLIED PHYSICS, 1970, 41 (05) :1915-&
[4]  
CHRISTOU A, 1993, ELECTROMIGRATION ELE
[5]   Statistical model for prebreakdown current jumps and breakdown caused by single traps in magnetic tunnel junctions [J].
Das, J ;
Degraeve, R ;
Groeseneken, G ;
Stein, S ;
Kohlstedt, H ;
Borghs, G ;
De Boeck, J .
JOURNAL OF APPLIED PHYSICS, 2003, 94 (04) :2749-2751
[6]  
EMONET N, 2005, 1 INT C MEM TECHN DE
[7]  
GAO Z, 2004, Patent No. 6791806
[8]   Thermal magnetic noise in tunneling readers [J].
Heinonen, O ;
Cho, HS .
IEEE TRANSACTIONS ON MAGNETICS, 2004, 40 (04) :2227-2232
[9]   Low-frequency magnetic noise in micron-scale magnetic tunnel junctions [J].
Ingvarsson, S ;
Xiao, G ;
Parkin, SSP ;
Gallagher, WJ ;
Grinstein, G ;
Koch, RH .
PHYSICAL REVIEW LETTERS, 2000, 85 (15) :3289-3292
[10]   NOISE IN SOLID-STATE MICROSTRUCTURES - A NEW PERSPECTIVE ON INDIVIDUAL DEFECTS, INTERFACE STATES AND LOW-FREQUENCY (1/F) NOISE [J].
KIRTON, MJ ;
UREN, MJ .
ADVANCES IN PHYSICS, 1989, 38 (04) :367-468