Detecting dynamical change in nonlinear time series

被引:35
作者
Hively, LM [1 ]
Gailey, PC [1 ]
Protopopescu, VA [1 ]
机构
[1] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
基金
美国能源部;
关键词
D O I
10.1016/S0375-9601(99)00342-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a robust, model-independent technique for measuring changes in the dynamics underlying nonlinear time-serial data. After constructing discrete density distributions of phase-space points on the attractor for time-windowed data sets, we measure the dissimilarity between density distributions via L-1-distance and chi(2) statistics. The discriminating power of the new measures is first tested on the Lorenz model and then applied to EEG data to detect the transition between non-seizure and epileptic activity. We find a clear superiority of the new measures in comparison to traditional nonlinear measures as discriminators of changing dynamics. (C) 1999 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:103 / 114
页数:12
相关论文
共 32 条
[21]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[22]  
2
[23]   Nonstationarity in epileptic EEG and implications for neural dynamics [J].
Manuca, R ;
Casdagli, MC ;
Savit, RS .
MATHEMATICAL BIOSCIENCES, 1998, 147 (01) :1-22
[24]   Measuring the distance between time series [J].
Moeckel, R ;
Murray, B .
PHYSICA D, 1997, 102 (3-4) :187-194
[25]  
SAMPINE LF, 1975, COMPUTER SOLUTION OR
[26]   EMBEDOLOGY [J].
SAUER, T ;
YORKE, JA ;
CASDAGLI, M .
JOURNAL OF STATISTICAL PHYSICS, 1991, 65 (3-4) :579-616
[27]   ESTIMATION OF THE DIMENSION OF A NOISY ATTRACTOR [J].
SCHOUTEN, JC ;
TAKENS, F ;
VANDENBLEEK, CM .
PHYSICAL REVIEW E, 1994, 50 (03) :1851-1861
[28]   MAXIMUM-LIKELIHOOD-ESTIMATION OF THE ENTROPY OF AN ATTRACTOR [J].
SCHOUTEN, JC ;
TAKENS, F ;
VANDENBLEEK, CM .
PHYSICAL REVIEW E, 1994, 49 (01) :126-129
[29]   Interdisciplinary application of nonlinear time series methods [J].
Schreiber, T .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1999, 308 (01) :2-64
[30]  
Shannon C. E., 1949, MATH THEORY COMMUNIC