Anterograde and retrograde intracellular trafficking of fluorescent cellular prion protein

被引:40
作者
Hachiya, NS
Watanabe, K
Yamada, M
Sakasegawa, Y
Kaneko, K [1 ]
机构
[1] Japan Sci & Technol Agcy, NCNP, NIN, Dept Cortical Funct Disorders, Tokyo 1878502, Japan
[2] Japan Sci & Technol Agcy, CREST, Tokyo 1878502, Japan
关键词
cellular prion protein; green fluorescent protein; microtubules; kinesin family; dynein;
D O I
10.1016/j.bbrc.2004.01.126
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In order to investigate the microtubule-associated intracellular trafficking of the NH2-terminal cellular prion protein (PrPC) fragment [Biochem. Biophys. Res. Commun. 313 (2004) 818], we performed a real-time imaging of fluorescent PrPC (GFP-PrPC) in living cells. Such GFP-PrPC exhibited an anterograde movement towards the direction of plasma membranes at a speed of 140180 nm/s, and a retrograde movement inwardly at a speed of 1.0-1.2 mum,/s. The anterograde and retrograde movements of GFP-PrPC were blocked by a kinesin family inhibitor (AMP-PNP) and a dynein family inhibitor (vanadate), respectively. Furthermore, anti-kinesin antibody (alpha-kinesin) blocked its anterograde motility, whereas anti-dynein antibody (alpha-dynein) blocked its retrograde motility. These data suggested the kinesin family-driven anterograde and the dynein-driven retrograde movements of GFP-PrPC. Mapping of the interacting domains of PrPC identified amino acid residues indispensable for interactions with kinesin family: NH2-terminal mouse (Mo) residues 53-91 and dynein: NH2-terminal Mo residues 23-33, respectively. Our findings argue that the discrete N-terminal amino acid residues are indispensable for the anterograde and retrograde intracellular movements of PrPC. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:802 / 807
页数:6
相关论文
共 36 条
[11]   Centriolar satellites: Molecular characterization, ATP-dependent movement toward centrioles and possible involvement in ciliogenesis [J].
Kubo, A ;
Sasaki, H ;
Yuba-Kubo, A ;
Tsukita, S ;
Shiina, N .
JOURNAL OF CELL BIOLOGY, 1999, 147 (05) :969-979
[12]   Prions prevent neuronal cell-line death [J].
Kuwahara, C ;
Takeuchi, AM ;
Nishimura, T ;
Haraguchi, K ;
Kubosaki, A ;
Matsumoto, Y ;
Saeki, K ;
Matsumoto, Y ;
Yokoyama, T ;
Itohara, S ;
Onodera, T .
NATURE, 1999, 400 (6741) :225-226
[13]   Internalization of mammalian fluorescent cellular prion protein and N-terminal deletion mutants in living cells [J].
Lee, KS ;
Magalhaes, AC ;
Zanata, SM ;
Brentani, RR ;
Martins, VR ;
Prado, MAM .
JOURNAL OF NEUROCHEMISTRY, 2001, 79 (01) :79-87
[14]   Cellular phenotyping of secretory and nuclear prion proteins associated with inherited prion diseases [J].
Lorenz, H ;
Windl, O ;
Kretzschmar, HA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (10) :8508-8516
[15]   Endocytic intermediates involved with the intracellular trafficking of a fluorescent cellular prion protein [J].
Magalhaes, AC ;
Silva, JA ;
Lee, KS ;
Martins, VR ;
Prado, VF ;
Ferguson, SSG ;
Gomez, MV ;
Brentani, RR ;
Prado, MAM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (36) :33311-33318
[16]   Model for the motor component of dynein heavy chain based on homology to the AAA family of oligomeric ATPases [J].
Mocz, G ;
Gibbons, IR .
STRUCTURE, 2001, 9 (02) :93-103
[17]   The metabolism and imaging in live cells of the bovine prion protein in its native form or carrying single amino acid substitutions [J].
Negro, A ;
Ballarin, C ;
Bertoli, A ;
Massimino, ML ;
Sorgato, MC .
MOLECULAR AND CELLULAR NEUROSCIENCE, 2001, 17 (03) :521-538
[18]   Essential role of the prion protein N terminus in subcellular trafficking and half-life of cellular prion protein [J].
Nunziante, M ;
Gilch, S ;
Schätzl, HM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (06) :3726-3734
[19]   PURIFICATION AND PROPERTIES OF THE CELLULAR PRION PROTEIN FROM SYRIAN-HAMSTER BRAIN [J].
PAN, KM ;
STAHL, N ;
PRUSINER, SB .
PROTEIN SCIENCE, 1992, 1 (10) :1343-1352
[20]   RETROGRADE TRANSPORT BY THE MICROTUBULE-ASSOCIATED PROTEIN MAP-1C [J].
PASCHAL, BM ;
VALLEE, RB .
NATURE, 1987, 330 (6144) :181-183