Comparison of algorithms for the analysis of Affymetrix microarray data as evaluated by co-expression of genes in known operons

被引:62
作者
Harr, B
Schlötterer, C
机构
[1] Univ Cologne, Inst Genet, D-50674 Cologne, Germany
[2] Vet Med Univ Wien, Inst Tierzucht & Genet, A-1210 Vienna, Austria
基金
奥地利科学基金会;
关键词
D O I
10.1093/nar/gnj010
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Oligonucleotide microarrays are an informative tool to elucidate gene regulatory networks. In order for gene expression levels to be comparable across microarrays, normalization procedures have to be invoked. A large number of methods have been described to correct for systematic biases in microarray experiments. The performance of these methods has been tested only to a limited extend. Here, we evaluate two different types of microarray analyses: (i) the same gene in replicate samples and (ii) different, but co-expressed genes in the same sample. The reliability of the latter analysis needs to be determined for the analysis of regulatory networks and our report is the first attempt to evaluate for the accuracy of different microarray normalization methods in this respect. Consistent with previous results we observed a large effect of the normalization method on the outcome of the expression analyses. Our analyses indicate that different normalization methods should be performed depending on whether a study is aiming to detect differential gene expression between independent samples or whether co-expressed genes should be identified. We make recommendations about the most appropriate method to use.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 19 条
[11]   Expression monitoring by hybridization to high-density oligonucleotide arrays [J].
Lockhart, DJ ;
Dong, HL ;
Byrne, MC ;
Follettie, MT ;
Gallo, MV ;
Chee, MS ;
Mittmann, M ;
Wang, CW ;
Kobayashi, M ;
Horton, H ;
Brown, EL .
NATURE BIOTECHNOLOGY, 1996, 14 (13) :1675-1680
[12]   POSITIVE AND NEGATIVE REGULATORY ELEMENTS IN THE DNAA-DNAN-RECF OPERON OF ESCHERICHIA-COLI [J].
PEREZROGER, I ;
GARCIASOGO, M ;
NAVARROAVINO, JP ;
LOPEZACEDO, C ;
MACIAN, F ;
ARMENGOD, ME .
BIOCHIMIE, 1991, 73 (2-3) :329-334
[13]   Higher plant glycosyltransferases [J].
Ross, Joe ;
Li, Yi ;
Lim, Eng-Kiat ;
Bowles, Dianna J. .
GENOME BIOLOGY, 2001, 2 (02)
[14]   RegulonDB (version 3.0):: transcriptional regulation and operon organization in Escherichia coli K-12 [J].
Salgado, H ;
Santos-Zavaleta, A ;
Gama-Castro, S ;
Millán-Zárate, D ;
Blattner, FR ;
Collado-Vides, J .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :65-67
[15]   Comparison of seven methods for producing Affymetrix expression scores based on false discovery rates in disease profiling data [J].
Shedden, K ;
Chen, W ;
Kuick, R ;
Ghosh, D ;
Macdonald, J ;
Cho, KR ;
Giordano, TJ ;
Gruber, SB ;
Fearon, ER ;
Taylor, JMG ;
Hanash, S .
BMC BIOINFORMATICS, 2005, 6 (1)
[16]  
Tjaden Brian, 2002, Bioinformatics, V18 Suppl 1, pS337
[17]   A study of inter-lab and inter-platform agreement of DNA microarray data [J].
Wang, HX ;
He, XM ;
Band, M ;
Wilson, C ;
Liu, L .
BMC GENOMICS, 2005, 6 (1)
[18]  
WU Z, 2004, WORKING PAPERS J HOP
[19]   Sources of variation in Affymetrix microarray experiments [J].
Zakharkin, SO ;
Kim, K ;
Mehta, T ;
Chen, L ;
Barnes, S ;
Scheirer, KE ;
Parrish, RS ;
Allison, DB ;
Page, GP .
BMC BIOINFORMATICS, 2005, 6 (1)