Fluctuations and correlations in sandpile models

被引:10
作者
Barrat, A
Vespignani, A
Zapperi, S
机构
[1] Univ Paris 11, Phys Theor Lab, UMR 8627, F-91405 Orsay, France
[2] Int Ctr Theoret Phys, I-34100 Trieste, Italy
[3] Ecole Super Phys & Chim Ind Ville Paris, PMMH, F-75231 Paris, France
关键词
D O I
10.1103/PhysRevLett.83.1962
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We perform numerical simulations of the sandpile model for nonvanishing driving fields it and dissipation rates epsilon. Unlike simulations performed in the slow driving limit, the unique time scale present in our system allows us to measure unambiguously the response and correlation functions. We discuss the dynamic scaling of the model and show that fluctuation-dissipation relations are not obeyed in this system.
引用
收藏
页码:1962 / 1965
页数:4
相关论文
共 33 条
[1]   SELF-ORGANIZED CRITICALITY [J].
BAK, P ;
TANG, C ;
WIESENFELD, K .
PHYSICAL REVIEW A, 1988, 38 (01) :364-374
[2]   SELF-ORGANIZED CRITICALITY - AN EXPLANATION OF 1/F NOISE [J].
BAK, P ;
TANG, C ;
WIESENFELD, K .
PHYSICAL REVIEW LETTERS, 1987, 59 (04) :381-384
[3]  
BARRAT A, IN PRESS
[4]   Mean-field behavior of the sandpile model below the upper critical dimension [J].
Chessa, A ;
Marinari, E ;
Vespignani, A ;
Zapperi, S .
PHYSICAL REVIEW E, 1998, 57 (06) :R6241-R6244
[5]   Universality in sandpiles [J].
Chessa, A ;
Stanley, HE ;
Vespignani, A ;
Zapperi, S .
PHYSICAL REVIEW E, 1999, 59 (01) :R12-R15
[6]   Energy flow, partial equilibration, and effective temperatures in systems with slow dynamics [J].
Cugliandolo, LF ;
Kurchan, J ;
Peliti, L .
PHYSICAL REVIEW E, 1997, 55 (04) :3898-3914
[7]   Rare events and breakdown of simple scaling in the Abelian sandpile model [J].
De Menech, M ;
Stella, AL ;
Tebaldi, C .
PHYSICAL REVIEW E, 1998, 58 (03) :R2677-R2680
[8]   SELF-ORGANIZED CRITICAL STATE OF SANDPILE AUTOMATON MODELS [J].
DHAR, D .
PHYSICAL REVIEW LETTERS, 1990, 64 (14) :1613-1616
[9]   NOISE AND DYNAMICS OF SELF-ORGANIZED CRITICAL PHENOMENA [J].
DIAZGUILERA, A .
PHYSICAL REVIEW A, 1992, 45 (12) :8551-8558
[10]   Self-organized criticality as an absorbing-state phase transition [J].
Dickman, R ;
Vespignani, A ;
Zapperi, S .
PHYSICAL REVIEW E, 1998, 57 (05) :5095-5105