A framework for evaluating image segmentation algorithms

被引:313
作者
Udupa, JK
LeBlanc, VR
Ying, ZG
Imielinska, C
Schmidt, H
Currie, LM
Hirsch, BE
Woodburn, J
机构
[1] Univ Penn, Dept Radiol, Med Image Proc Grp, Philadelphia, PA 19104 USA
[2] Columbia Univ Coll Phys & Surg, Off Scholarly Resources, New York, NY 10032 USA
[3] Columbia Univ Coll Phys & Surg, Ctr Educ Res & Evaluat, New York, NY 10032 USA
[4] Columbia Univ Coll Phys & Surg, Dept Biomed Informat, New York, NY 10032 USA
[5] Columbia Univ, Dept Comp Sci, New York, NY 10027 USA
[6] Columbia Univ, Sch Nursing, New York, NY 10027 USA
[7] Drexel Univ, Coll Med, Dept Neurobiol & Anat, Philadelphia, PA 19104 USA
[8] Univ Leeds, Rheumatol & Rehabil Res Unit, Leeds, W Yorkshire, England
关键词
image segmentation; evaluation of segmentation; linage analysis; segmentation efficacy;
D O I
10.1016/j.compmedimag.2005.12.001
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The purpose of this paper is to describe a framework for evaluating image segmentation algorithms. Image segmentation consists of object recognition and delineation. For evaluating segmentation methods, three factors-precision (reliability), accuracy (validity), and efficiency (viability)-need to be considered for both recognition and delineation. To assess precision, we need to choose a figure of merit, repeat segmentation considering all sources of variation, and determine variations in figure of merit via statistical analysis. It is impossible usually to establish true segmentation. Hence, to assess accuracy, we need to choose a surrogate of true segmentation and proceed as for precision. In determining accuracy, it may be important to consider different 'landmark' areas of the structure to be segmented depending on the application. To assess efficiency, both the computational and the user time required for algorithm training and for algorithm execution should be measured and analyzed. Precision, accuracy, and efficiency factors have an influence on one another. It is difficult to improve one factor without affecting others. Segmentation methods must be compared based on all three factors, as illustrated in an example wherein two methods are compared in a particular application domain. The weight given to each factor depends on application. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:75 / 87
页数:13
相关论文
共 30 条
[11]   COMPARING IMAGES USING THE HAUSDORFF DISTANCE [J].
HUTTENLOCHER, DP ;
KLANDERMAN, GA ;
RUCKLIDGE, WJ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1993, 15 (09) :850-863
[12]   Three-dimensional modeling of biopsy protocols for localized prostate cancer [J].
Loughlin, M ;
Carlbom, I ;
Busch, C ;
Douglas, T ;
Egevad, L ;
Frimmel, H ;
Norberg, M ;
Sesterhenn, I ;
Frogge, JM .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 1998, 22 (03) :229-238
[13]   Spiral CT colonography: Reader agreement and diagnostic performance with two- and three-dimensional image-display techniques [J].
McFarland, EG ;
Brink, JA ;
Pilgram, TK ;
Heiken, JP ;
Balfe, DM ;
Hirselj, DA ;
Weinstock, L ;
Littenberg, B .
RADIOLOGY, 2001, 218 (02) :375-383
[14]   EVALUATION OF RECEIVER OPERATING CHARACTERISTIC CURVE DATA IN TERMS OF INFORMATION-THEORY, WITH APPLICATIONS IN RADIOGRAPHY [J].
METZ, CE ;
GOODENOUGH, DJ ;
ROSSMANN, K .
RADIOLOGY, 1973, 109 (02) :297-303
[15]  
Nyúl LG, 1999, MAGNET RESON MED, V42, P1072, DOI 10.1002/(SICI)1522-2594(199912)42:6<1072::AID-MRM11>3.0.CO
[16]  
2-M
[17]   A protocol-independent brain MRI segmentation method [J].
Nyúl, LG ;
Udupa, JK .
MEDICAL IMAGING 2002: IMAGE PROCESSING, VOL 1-3, 2002, 4684 :1588-1599
[18]   A REVIEW ON IMAGE SEGMENTATION TECHNIQUES [J].
PAL, NR ;
PAL, SK .
PATTERN RECOGNITION, 1993, 26 (09) :1277-1294
[19]   INTERFERON BETA-1B IS EFFECTIVE IN RELAPSING-REMITTING MULTIPLE-SCLEROSIS .2. MRI ANALYSIS RESULTS OF A MULTICENTER, RANDOMIZED, DOUBLE-BLIND, PLACEBO-CONTROLLED TRIAL [J].
PATY, DW ;
LI, DKB ;
DUQUETTE, P ;
GIRARD, M ;
DESPAULT, L ;
DUBOIS, R ;
KNOBLER, RL ;
LUBLIN, FD ;
KELLEY, L ;
FRANCIS, GS ;
LAPIERRE, Y ;
ANTEL, J ;
FREEDMAN, M ;
HUM, S ;
GREENSTEIN, JI ;
MISHRA, B ;
MULDOON, J ;
WHITAKER, JN ;
EVANS, BK ;
LAYTON, B ;
SIBLEY, WA ;
LAGUNA, J ;
KRIKAWA, J ;
PATY, DW ;
OGER, JJ ;
KASTRUKOFF, LF ;
MOORE, GRW ;
HASHIMOTO, SA ;
MORRISON, W ;
NELSON, J ;
GOODIN, DS ;
MASSA, SM ;
GUTTERIDGE, E ;
ARNASON, BGW ;
NORONHA, A ;
REDER, AT ;
MARTIA, R ;
EBERS, GC ;
RICE, GPA ;
LESAUX, J ;
JOHNSON, KP ;
PANITCH, HS ;
BEVER, CT ;
CONWAY, K ;
WALLENBERG, JC ;
BEDELL, L ;
VANDENNOORT, S ;
WEINSHENKER, B ;
WEISS, W ;
REINGOLD, S .
NEUROLOGY, 1993, 43 (04) :662-667
[20]   Current methods in medical image segmentation [J].
Pham, DL ;
Xu, CY ;
Prince, JL .
ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2000, 2 :315-+