Energetics and cooperativity of tertiary hydrogen bonds in RNA structure

被引:106
作者
Silverman, SK
Cech, TR
机构
[1] Univ Colorado, Howard Hughes Med Inst, Boulder, CO 80309 USA
[2] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA
关键词
D O I
10.1021/bi9906118
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Tertiary interactions that allow RNA to fold into intricate three-dimensional structures are being identified, but little is known about the thermodynamics of individual interactions. Here we quantify the tertiary structure contributions of individual hydrogen bonds in a "ribose zipper" motif of the recently crystallized Tetrahymena group I intron P4-P6 domain. The 2'-hydroxyls of P4-P6 nucleotides C109/A184 and A183/G110 participate in forming the "teeth" of the zipper. These four nucleotides were substituted in all combinations with their 2'-deoxy and (separately) 2'-methoxy analogues, and thermodynamic effects on the tertiary folding Delta G degrees' were assayed by the Mg2+ dependence of electrophoretic mobility in nondenaturing gels. The 2'-deoxy series showed a consistent trend with an average contribution to the tertiary folding Delta G degrees' of -0.4 to -0.5 kcal/mol per hydrogen bond. Contributions were approximately additive, reflecting no cooperativity among the hydrogen bonds. Each "tooth" of the ribose zipper (comprising two hydrogen bonds) thus contributes about -1.0 kcal/mol to the tertiary folding Delta G degrees'. Single 2'-methoxy substitutions destabilized folding by similar to 1 kcal/mol, but the trend reversed with multiple 2'-methoxy substitutions; the folding Delta G degrees' for the quadruple 2'-methoxy derivative was approximately unchanged relative to wild-type. On the basis of these data and on temperature-gradient gel results, we conclude that entropically favorable hydrophobic interactions balance enthalpically unfavorable hydrogen bond deletions and steric clashes for multiple 2'-methoxy substitutions. Because many of the 2'-deoxy derivatives no longer have the characteristic hydrogen-bond patterns of the ribose zipper motif but simply have individual long-range ribose-base or ribose-ribose hydrogen bonds, we speculate that the energetic value of -0.4 to -0.5 kcal/mol per tertiary hydrogen bond may be more generally applicable to RNA folding.
引用
收藏
页码:8691 / 8702
页数:12
相关论文
共 34 条
[1]   SPECIFIC INTERACTION BETWEEN THE SELF-SPLICING RNA OF TETRAHYMENA AND ITS GUANOSINE SUBSTRATE - IMPLICATIONS FOR BIOLOGICAL CATALYSIS BY RNA [J].
BASS, BL ;
CECH, TR .
NATURE, 1984, 308 (5962) :820-826
[2]   A specific monovalent metal ion integral to the AA platform of the RNA tetraloop receptor [J].
Basu, S ;
Rambo, RP ;
Strauss-Soukup, J ;
Cate, JH ;
Ferré-D'Amaré, AR ;
Strobel, SA ;
Doudna, JA .
NATURE STRUCTURAL BIOLOGY, 1998, 5 (11) :986-992
[3]   COMPARISON OF BINDING OF MIXED RIBOSE DEOXYRIBOSE ANALOGS OF CUCU TO A RIBOZYME AND TO GGAGAA BY EQUILIBRIUM DIALYSIS - EVIDENCE FOR RIBOZYME SPECIFIC INTERACTIONS WITH 2' OH GROUPS [J].
BEVILACQUA, PC ;
TURNER, DH .
BIOCHEMISTRY, 1991, 30 (44) :10632-10640
[4]   A magnesium ion core at the heart of a ribozyme domain [J].
Cate, JH ;
Hanna, RL ;
Doudna, JA .
NATURE STRUCTURAL BIOLOGY, 1997, 4 (07) :553-558
[5]   Crystal structure of a group I ribozyme domain: Principles of RNA packing [J].
Cate, JH ;
Gooding, AR ;
Podell, E ;
Zhou, KH ;
Golden, BL ;
Kundrot, CE ;
Cech, TR ;
Doudna, JA .
SCIENCE, 1996, 273 (5282) :1678-1685
[6]   FREQUENT USE OF THE SAME TERTIARY MOTIF BY SELF-FOLDING RNAS [J].
COSTA, M ;
MICHEL, F .
EMBO JOURNAL, 1995, 14 (06) :1276-1285
[7]  
DOUDNA JA, 1995, RNA, V1, P36
[8]   Crystal structure of a hepatitis delta virus ribozyme [J].
Ferré-D'Amaré, AR ;
Zhou, KH ;
Doudna, JA .
NATURE, 1998, 395 (6702) :567-574
[9]   HYDROGEN-BONDING AND BIOLOGICAL SPECIFICITY ANALYZED BY PROTEIN ENGINEERING [J].
FERSHT, AR ;
SHI, JP ;
KNILLJONES, J ;
LOWE, DM ;
WILKINSON, AJ ;
BLOW, DM ;
BRICK, P ;
CARTER, P ;
WAYE, MMY ;
WINTER, G .
NATURE, 1985, 314 (6008) :235-238
[10]   STABILITY OF XGCGCP, GCGCYP, AND XGCGCYP HELIXES - AN EMPIRICAL ESTIMATE OF THE ENERGETICS OF HYDROGEN-BONDS IN NUCLEIC-ACIDS [J].
FREIER, SM ;
SUGIMOTO, N ;
SINCLAIR, A ;
ALKEMA, D ;
NEILSON, T ;
KIERZEK, R ;
CARUTHERS, MH ;
TURNER, DH .
BIOCHEMISTRY, 1986, 25 (11) :3214-3219