Experimental investigation of electron transport properties of gallium nitride nanowires

被引:30
作者
Motayed, Abhishek [1 ]
Davydov, Albert V. [1 ]
Mohammad, S. N. [2 ]
Melngailis, John [3 ]
机构
[1] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA
[2] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
[3] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA
关键词
D O I
10.1063/1.2952035
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report transport properties of gallium nitride (GaN) nanowires grown using direct reaction of ammonia and gallium vapor. Reliable devices, such as four-terminal resistivity measuring structures and field-effect transistors, were realized by dielectrophoretically aligning the nanowires on an oxidized silicon substrate and subsequently applying standard microfabrication techniques. Room-temperature resistivity in the range of (1.0-6.2) x 10(-2) ohm cm was obtained for the nanowires with diameters ranging from 200 to 90 nm. Temperature-dependent resistivity and mobility measurements indicated the possible sources for the n-type conductivity and high background charge carrier concentration in these nanowires. Specific contact resistance in the range of 5.0 x 10(-5) ohm cm(2) was extracted for Ti/Al/Ti/Au metal contacts to GaN nanowires. Significant reduction in the activation energy of the dopants at low temperatures (< 200 K) was observed in the temperature-dependent resistivity measurement of these nanowires, which is linked to the onset of degeneracy. Temperature-dependent field-effect mobility measurements indicated that the ionized impurity scattering is the dominant mechanism in these nanowires at all temperatures. (c) 2008 American Institute of Physics.
引用
收藏
页数:5
相关论文
共 29 条
[21]   Gallium nitride-based nanowire radial heterostructures for nanophotonics [J].
Qian, F ;
Li, Y ;
Gradecak, S ;
Wang, DL ;
Barrelet, CJ ;
Lieber, CM .
NANO LETTERS, 2004, 4 (10) :1975-1979
[22]   Electron transport in degenerate mn-doped ZnO nanowires [J].
Salfi, J. ;
Philipose, U. ;
Aouba, S. ;
Nair, S. V. ;
Ruda, H. E. .
APPLIED PHYSICS LETTERS, 2007, 90 (03)
[23]   Electronic conduction in GaN nanowires - art. no. 072111 [J].
Simpkins, BS ;
Pehrsson, PE ;
Laracuente, AR .
APPLIED PHYSICS LETTERS, 2006, 88 (07)
[24]   Electrical characterization of single GaN nanowires [J].
Stern, E ;
Cheng, G ;
Cimpoiasu, E ;
Klie, R ;
Guthrie, S ;
Klemic, J ;
Kretzschmar, I ;
Steinlauf, E ;
Turner-Evans, D ;
Broomfield, E ;
Hyland, J ;
Koudelka, R ;
Boone, T ;
Young, M ;
Sanders, A ;
Munden, R ;
Lee, T ;
Routenberg, D ;
Reed, MA .
NANOTECHNOLOGY, 2005, 16 (12) :2941-2953
[25]   Electron transport in InAs nanowires and heterostructure nanowire devices [J].
Thelander, C ;
Björk, MT ;
Larsson, MW ;
Hansen, AE ;
Wallenberg, LR ;
Samuelson, L .
SOLID STATE COMMUNICATIONS, 2004, 131 (9-10) :573-579
[26]   Coaxial silicon nanowires as solar cells and nanoelectronic power sources [J].
Tian, Bozhi ;
Zheng, Xiaolin ;
Kempa, Thomas J. ;
Fang, Ying ;
Yu, Nanfang ;
Yu, Guihua ;
Huang, Jinlin ;
Lieber, Charles M. .
NATURE, 2007, 449 (7164) :885-U8
[27]   Ferromagnetic GaN:MnAlSi nanowires [J].
Xu, CK ;
Chun, J ;
Rho, K ;
Kim, DE ;
Kim, BJ ;
Yoon, S ;
Han, SE ;
Kim, JJ .
JOURNAL OF APPLIED PHYSICS, 2006, 99 (06)
[28]   Multiplexed electrical detection of cancer markers with nanowire sensor arrays [J].
Zheng, GF ;
Patolsky, F ;
Cui, Y ;
Wang, WU ;
Lieber, CM .
NATURE BIOTECHNOLOGY, 2005, 23 (10) :1294-1301
[29]   Ca and O ion implantation doping of GaN [J].
Zolper, JC ;
Wilson, RG ;
Pearton, SJ ;
Stall, RA .
APPLIED PHYSICS LETTERS, 1996, 68 (14) :1945-1947