Elementary chaotic flow

被引:74
作者
Linz, SJ [1 ]
Sprott, JC
机构
[1] Univ Augsburg, Inst Phys, D-86135 Augsburg, Germany
[2] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA
关键词
chaos; jerk; flow; strange attractor; differential equations; fractal;
D O I
10.1016/S0375-9601(99)00450-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using an extensive numerical search for the simplest chaotic non-polynomial autonomous three-dimensional dynamical systems, we identify an elementary third-order diffential equation that contains only one control parameter and only one nonlinearity in the form of the modulus of the dynamical variable. We discuss general properties of this equation and the possibility of chaotic behavior in functionally closely related equations. Finally, we present its analytical solution in an algorithmic way. (C) 1999 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:240 / 245
页数:6
相关论文
共 23 条
[1]  
[Anonymous], PERSPECTIVES NONLINE
[2]  
ARGYRIS J, 1996, EXPLORATION CHAOS
[3]  
Benettin G., 1980, MECCANICA, V15, P21, DOI DOI 10.1007/BF02128237
[4]   ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS [J].
ECKMANN, JP ;
RUELLE, D .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :617-656
[5]   Transformations of nonlinear dynamical systems to jerky motion and its application to minimal chaotic flows [J].
Eichhorn, R ;
Linz, SJ ;
Hänggi, P .
PHYSICAL REVIEW E, 1998, 58 (06) :7151-7164
[6]   Non-chaotic behaviour in three-dimensional quadratic systems [J].
Fu, Z ;
Heidel, J .
NONLINEARITY, 1997, 10 (05) :1289-1303
[7]  
Jackson E. A., 1989, Perspectives of Nonlinear Dynamics, V1
[8]   Nonlinear dynamical models and jerky motion [J].
Linz, SJ .
AMERICAN JOURNAL OF PHYSICS, 1997, 65 (06) :523-526
[9]   Newtonian jerky dynamics: some general properties [J].
Linz, SJ .
AMERICAN JOURNAL OF PHYSICS, 1998, 66 (12) :1109-1114
[10]  
LINZ SJ, UNPUB