A toolbox for multiple sclerosis lesion segmentation

被引:77
作者
Roura, Eloy [1 ]
Oliver, Arnau [1 ]
Cabezas, Mariano [2 ]
Valverde, Sergi [1 ]
Pareto, Deborah [2 ]
Vilanova, Joan C. [3 ]
Ramio-Torrenta, Lluis [4 ]
Rovira, Alex [2 ]
Llado, Xavier [1 ]
机构
[1] Univ Girona, Comp Vis & Robot Grp, Girona 17071, Spain
[2] Vall Hebron Univ Hosp, Dept Radiol, Magnet Resonance Unit, Barcelona, Spain
[3] Girona Magnet Resonance Ctr, Girona, Spain
[4] Dr Josep Trueta Univ Hosp, Inst Invest Biomed Girona, Multiple Sclerosis & Neuroimmunol Unit, Girona, Spain
关键词
Multiple sclerosis; Magnetic resonance images; Lesion detection; Lesion segmentation; Automated tool; WHITE-MATTER LESIONS; BRAIN EXTRACTION; INTENSITY NONUNIFORMITY; MRI; CLASSIFICATION; IMAGES;
D O I
10.1007/s00234-015-1552-2
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Lesion segmentation plays an important role in the diagnosis and follow-up of multiple sclerosis (MS). This task is very time-consuming and subject to intra- and inter-rater variability. In this paper, we present a new tool for automated MS lesion segmentation using T1w and fluid-attenuated inversion recovery (FLAIR) images. Our approach is based on two main steps, initial brain tissue segmentation according to the gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) performed in T1w images, followed by a second step where the lesions are segmented as outliers to the normal apparent GM brain tissue on the FLAIR image. The tool has been validated using data from more than 100 MS patients acquired with different scanners and at different magnetic field strengths. Quantitative evaluation provided a better performance in terms of precision while maintaining similar results on sensitivity and Dice similarity measures compared with those of other approaches. Our tool is implemented as a publicly available SPM8/12 extension that can be used by both the medical and research communities.
引用
收藏
页码:1031 / 1043
页数:13
相关论文
共 31 条
[1]  
[Anonymous], NEUROINFORMATICS
[2]   Unified segmentation [J].
Ashburner, J ;
Friston, KJ .
NEUROIMAGE, 2005, 26 (03) :839-851
[3]  
Battaglini M, 2013, J MAGN RESON IMAGING
[4]   Quantitative comparison of four brain extraction algorithms [J].
Boesen, K ;
Rehm, K ;
Schaper, K ;
Stoltzner, S ;
Woods, R ;
Lüders, E ;
Rottenberg, D .
NEUROIMAGE, 2004, 22 (03) :1255-1261
[5]   Intensity non-uniformity correction using N3 on 3-T scanners with mutichannel phased array coils [J].
Boyes, Richard G. ;
Gunter, Jeff L. ;
Frost, Chris ;
Janke, Andrew L. ;
Yeatman, Thomas ;
Hill, Derek L. G. ;
Bernstein, Matt A. ;
Thompson, Paul M. ;
Weiner, Michael W. ;
Schuff, Norbert ;
Alexander, Gene E. ;
Killiany, Ronald J. ;
DeCarli, Charles ;
Jack, Clifford R. ;
Fox, Nick C. .
NEUROIMAGE, 2008, 39 (04) :1752-1762
[6]   BOOST: A supervised approach for multiple sclerosis lesion segmentation [J].
Cabezas, Mariano ;
Oliver, Arnau ;
Valverde, Sergi ;
Beltran, Brigitte ;
Freixenet, Jordi ;
Vilanova, Joan C. ;
Ramio-Torrenta, Lluis ;
Rovira, Alex ;
Llado, Xavier .
JOURNAL OF NEUROSCIENCE METHODS, 2014, 237 :108-117
[7]   Automatic multiple sclerosis lesion detection in brain MRI by FLAIR thresholding [J].
Cabezas, Mariano ;
Oliver, Arnau ;
Roura, Eloy ;
Freixenet, Jordi ;
Vilanova, Joan C. ;
Ramio-Torrenta, Lluis ;
Rovira, Alex ;
Llado, Xavier .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2014, 115 (03) :147-161
[8]   A comprehensive approach to the segmentation of multichannel three-dimensional MR brain images in multiple sclerosis [J].
Datta, Sushmita ;
Narayana, Ponnada A. .
NEUROIMAGE-CLINICAL, 2013, 2 :184-196
[9]  
Ganiler O, 2014, NEURORADIOLOGY, P1
[10]  
Garcia-Lorenzo D., 2008, Proc. MICCAI Workshop on Medical Image Analysis on Multiple Sclerosis MIAMS'08, P82