Automatic multiple sclerosis lesion detection in brain MRI by FLAIR thresholding

被引:34
作者
Cabezas, Mariano [1 ]
Oliver, Arnau [1 ]
Roura, Eloy [1 ]
Freixenet, Jordi [1 ]
Vilanova, Joan C. [2 ]
Ramio-Torrenta, Lluis [3 ]
Rovira, Alex [4 ]
Llado, Xavier [1 ]
机构
[1] Univ Girona, Dept Comp Architecture & Technol, Girona 17071, Spain
[2] Girona Magnet Resonance Ctr, Girona, Spain
[3] Dr Josep Trueta Univ Hosp, Multiple Sclerosis & Neuroimmunol Unit, Girona, Spain
[4] Vall DHebron Univ Hosp, Dept Radiol, Magnet Resonance Unit, Barcelona, Spain
关键词
Multiple sclerosis; Lesion segmentation; MRI; WHITE-MATTER LESIONS; IMAGE SEGMENTATION; CLASSIFICATION; COMBINATION; ALGORITHM;
D O I
10.1016/j.cmpb.2014.04.006
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Magnetic resonance imaging (MRI) is frequently used to detect and segment multiple sclerosis lesions due to the detailed and rich information provided. We present a modified expectation-maximisation algorithm to segment brain tissues (white matter, grey matter, and cerebro-spinal fluid) as well as a partial volume class containing fluid and grey matter. This algorithm provides an initial segmentation in which lesions are not separated from tissue, thus a second step is needed to find them. This second step involves the thresholding of the FLAIR image, followed by a regionwise refinement to discard false detections. To evaluate the proposal, we used a database with 45 cases comprising 1.5T imaging data from three different hospitals with different scanner machines and with a variable lesion load per case. The results for our database point out to a higher accuracy when compared to two of the best state-of-the-art approaches. (C) 2014 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:147 / 161
页数:15
相关论文
共 38 条
[1]   Automatic Segmentation and Classification of Multiple Sclerosis in Multichannel MRI [J].
Akselrod-Ballin, Ayelet ;
Galun, Meirav ;
Gomori, John Moshe ;
Filippi, Massimo ;
Valsasina, Paola ;
Basri, Ronen ;
Brandt, Achi .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2009, 56 (10) :2461-2469
[2]   Combination Strategies in Multi-Atlas Image Segmentation: Application to Brain MR Data [J].
Artaechevarria, Xabier ;
Munoz-Barrutia, Arrate ;
Ortiz-de-Solorzano, Carlos .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (08) :1266-1277
[3]   Voxel-based morphometry - The methods [J].
Ashburner, J ;
Friston, KJ .
NEUROIMAGE, 2000, 11 (06) :805-821
[4]   Comparison of MRI criteria at first presentation to predict conversion to clinically definite multiple sclerosis [J].
Barkhof, F ;
Filippi, M ;
Miller, DH ;
Scheltens, P ;
Campi, A ;
Polman, CH ;
Comi, G ;
Ader, HJ ;
Losseff, N ;
Valk, J .
BRAIN, 1997, 120 :2059-2069
[5]   A review of atlas-based segmentation for magnetic resonance brain images [J].
Cabezas, Mariano ;
Oliver, Arnau ;
Llado, Xavier ;
Freixenet, Jordi ;
Cuadra, Meritxell Bach .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2011, 104 (03) :E158-E177
[6]   Dense deformation field estimation for atlas-based segmentation of pathological MR brain images [J].
Cuadra, M. Bach ;
De Craene, M. ;
Duay, V. ;
Macq, B. ;
Pollo, C. ;
Thiran, J. -Ph. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2006, 84 (2-3) :66-75
[7]   White matter lesion extension to automatic brain tissue segmentation on MRI [J].
de Boer, Renske ;
Vrooman, Henri A. ;
van der Lijn, Fedde ;
Vernooij, Meike W. ;
Ikram, M. Arfan ;
van der Lugt, Aad ;
Breteler, Monique M. B. ;
Niessen, Wiro J. .
NEUROIMAGE, 2009, 45 (04) :1151-1161
[8]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[9]   Influence of multichannel combination, parallel imaging and other reconstruction techniques on MRI noise characteristics [J].
Dietrich, Olaf ;
Raya, Jose G. ;
Reeder, Scott B. ;
Ingrisch, Michael ;
Reiser, Maximilian F. ;
Schoenberg, Stefan O. .
MAGNETIC RESONANCE IMAGING, 2008, 26 (06) :754-762
[10]  
Dugas-Phocion G., 2004, INT C MED IM COMP CO