Label-free detection of cupric ions and histidine-tagged proteins using single poly(pyrrole)-NTA chelator conducting polymer nanotube chemiresistive sensor

被引:22
作者
Aravinda, C. L. [1 ,2 ]
Cosnier, Serge [3 ]
Chen, Wilfred [1 ,2 ]
Myung, Nosang V. [1 ,2 ]
Mulchandani, Ashok [1 ,2 ]
机构
[1] Univ Calif Riverside, Dept Chem & Environm Engn, Riverside, CA 92521 USA
[2] Univ Calif Riverside, Ctr Nanoscale Sci & Engn, Riverside, CA 92521 USA
[3] CNRS, Lab Electrochim Organ & Photochim Redox, UMR 5630, Inst Chim Mol Grenoble Fr 2607, F-38041 Grenoble 9, France
基金
美国国家科学基金会;
关键词
Nanotube; Histidine-tagged protein sensing; Poly(pyrrole)-NTA; Chemiresistive sensor; CHEMICAL DERIVATIZATION; FABRICATION;
D O I
10.1016/j.bios.2008.08.044
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Novel chemical and biological sensors based on a single poly(pyrrole)-NTA chelator nanotube for sensitive, selective, rapid and real-time detection of histidine-tagged protein and cupric ions are reported. NTA groups on the nanotube surface provided a simple mechanism for metal ion sensing via the high-affinity interaction between NTA and the subsequent detection of histidine-tagged protein through the coordination with metal chelated nanotube. Poly(pyrrole)-NTA chelator nanotubes of 190 nm outside diameter, 35 nm wall thickness and 30 mu m long were synthesized by electrochemical polymerization of pyrrole-NTA inside a 200 nm diameter alumina template and assembled as a chemoresistive device by bottom-up contact geometry on a pair of parallel gold electrodes with a gap distance of 3 pm. The chemoresistive sensors based on single poly(pyrrole)-NTA chelator nanotube exhibited detection as low as one-hundredth attomolar (0.6 ppt) cupric ions and 1 ng/ml of penta-histidine tagged syntaxin protein. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1451 / 1455
页数:5
相关论文
共 13 条
[1]   Development of a new and simple method for the detection of histidine-tagged proteins [J].
Darain, F ;
Ban, CI ;
Shim, YB .
BIOSENSORS & BIOELECTRONICS, 2004, 20 (04) :857-863
[2]   Electrogeneration of a poly(pyrrole)-NTA chelator film for a reversible oriented immobilization of histidine-tagged proteins [J].
Haddour, N ;
Cosnier, S ;
Gondran, C .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (16) :5752-5753
[3]   CHEMICAL DERIVATIZATION OF MICROELECTRODE ARRAYS BY OXIDATION OF PYRROLE AND N-METHYLPYRROLE - FABRICATION OF MOLECULE-BASED ELECTRONIC DEVICES [J].
KITTLESEN, GP ;
WHITE, HS ;
WRIGHTON, MS .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1984, 106 (24) :7389-7396
[4]   Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures [J].
Kolmakov, A ;
Moskovits, M .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2004, 34 :151-180
[5]   Membrane-based synthesis of nanomaterials [J].
Martin, CR .
CHEMISTRY OF MATERIALS, 1996, 8 (08) :1739-1746
[6]   On the behaviour of the selective iodine-based gold etch for the failure analysis of aged optoelectronic devices [J].
Mura, G ;
Vanzi, M ;
Stangoni, M ;
Ciappa, M ;
Fichtner, W .
MICROELECTRONICS RELIABILITY, 2003, 43 (9-11) :1771-1776
[7]   Nanowire sensors for medicine and the life sciences [J].
Patolsky, Fernando ;
Zheng, Gengfeng ;
Lieber, Charles M. .
NANOMEDICINE, 2006, 1 (01) :51-65
[8]   Bioaffinity sensing using biologically functionalized conducting-polymer nanowire [J].
Ramanathan, K ;
Bangar, MA ;
Yun, M ;
Chen, W ;
Myung, NV ;
Mulchandani, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (02) :496-497
[9]   Polymer nanotubes by wetting of ordered porous templates [J].
Steinhart, M ;
Wendorff, JH ;
Greiner, A ;
Wehrspohn, RB ;
Nielsch, K ;
Schilling, J ;
Choi, J ;
Gösele, U .
SCIENCE, 2002, 296 (5575) :1997-1997
[10]   Field-effect transistors based on single nanowires of conducting polymers [J].
Wanekaya, Adam K. ;
Bangar, Mangesh A. ;
Yun, Minhee ;
Chen, Wilfred ;
Myung, Nosang V. ;
Mulchandani, Ashok .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (13) :5218-5221