Recombination of protein fragments: A promising approach toward engineering proteins with novel nanomechanical properties

被引:16
作者
Balamurali, M. M. [1 ]
Sharma, Deepak [1 ]
Chang, Anderson [1 ]
Khor, Dingyue [1 ]
Chu, Ricky [1 ]
Li, Hongbin [1 ]
机构
[1] Univ British Columbia, Dept Chem, Vancouver, BC V6T 1Z1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
single-molecule force spectroscopy; elastomeric protein; recombination; mechanical stability; mechanical unfolding;
D O I
10.1110/ps.036376.108
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Combining single molecule atomic force microscopy (AFM) and protein engineering techniques, here we demonstrate that we can use recombination-based techniques to engineer novel elastomeric proteins by recombining protein fragments from structurally homologous parent proteins. Using I27 and I32 domains from the muscle protein titin as parent template proteins, we systematically shuffled the secondary structural elements of the two parent proteins and engineered 13 hybrid daughter proteins. Although I27 and I32 are highly homologous, and homology modeling predicted that the hybrid daughter proteins fold into structures that are similar to that of parent protein, we found that only eight of the 13 daughter proteins showed beta-sheet dominated structures that are similar to parent proteins, and the other five recombined proteins showed signatures of the formation of significant alpha-helical or random coil-like structure. Single molecule AFM revealed that six recombined daughter proteins are mechanically stable and exhibit mechanical properties that are different from the parent proteins. In contrast, another four of the hybrid proteins were found to be mechanically labile and unfold at forces that are lower than the similar to 20 pN, as we could not detect any unfolding force peaks. The last three hybrid proteins showed interesting duality in their mechanical unfolding behaviors. These results demonstrate the great potential of using recombination-based approaches to engineer novel elastomeric protein domains of diverse mechanical properties. Moreover, our results also revealed the challenges and complexity of developing a recombination-based approach into a laboratory-based directed evolution approach to engineer novel elastomeric proteins.
引用
收藏
页码:1815 / 1826
页数:12
相关论文
共 50 条
[1]  
Arnold F.H., 2003, Directed Enzyme Evolution: Screening and Selection Methods
[2]   Computational redesign of endonuclease DNA binding and cleavage specificity [J].
Ashworth, Justin ;
Havranek, James J. ;
Duarte, Carlos M. ;
Sussman, Django ;
Monnat, Raymond J., Jr. ;
Stoddard, Barry L. ;
Baker, David .
NATURE, 2006, 441 (7093) :656-659
[3]   Cell and molecular mechanics of biological materials [J].
Bao, G ;
Suresh, S .
NATURE MATERIALS, 2003, 2 (11) :715-725
[4]   Molecular nanosprings in spider capture-silk threads [J].
Becker, N ;
Oroudjev, E ;
Mutz, S ;
Cleveland, JP ;
Hansma, PK ;
Hayashi, CY ;
Makarov, DE ;
Hansma, HG .
NATURE MATERIALS, 2003, 2 (04) :278-283
[5]   Can non-mechanical proteins withstand force? Stretching barnase by atomic force microscopy and molecular dynamics simulation [J].
Best, RB ;
Li, B ;
Steward, A ;
Daggett, V ;
Clarke, J .
BIOPHYSICAL JOURNAL, 2001, 81 (04) :2344-2356
[6]   Directed evolution of protein enzymes using nonhomologous random recombination [J].
Bittker, JA ;
Le, BV ;
Liu, JM ;
Liu, DR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (18) :7011-7016
[7]   Evolving strategies for enzyme engineering [J].
Bloom, JD ;
Meyer, MM ;
Meinhold, P ;
Otey, CR ;
MacMillan, D ;
Arnold, FH .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2005, 15 (04) :447-452
[8]   Mechanically unfolding the small, topologically simple protein L [J].
Brockwell, DJ ;
Beddard, GS ;
Paci, E ;
West, DK ;
Olmsted, PD ;
Smith, DA ;
Radford, SE .
BIOPHYSICAL JOURNAL, 2005, 89 (01) :506-519
[9]   Nonmechanical protein can have significant mechanical stability [J].
Cao, Y ;
Lam, C ;
Wang, MJ ;
Li, HB .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (04) :642-645
[10]   Polyprotein of GB1 is an ideal artificial elastomeric protein [J].
Cao, Yi ;
Li, Hongbin .
NATURE MATERIALS, 2007, 6 (02) :109-114