Edge of chaos in a parallel shear flow

被引:236
作者
Skufca, JD [1 ]
Yorke, JA
Eckhardt, B
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[2] Univ Maryland, Burgers Program, IREAP, College Pk, MD 20742 USA
[3] Univ Maryland, IPST, College Pk, MD 20742 USA
[4] Univ Marburg, Fachbereich Phys, D-35032 Marburg, Germany
关键词
D O I
10.1103/PhysRevLett.96.174101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the transition between laminar and turbulent states in a Galerkin representation of a parallel shear flow, where a stable laminar flow and a transient turbulent flow state coexist. The regions of initial conditions where the lifetimes show strong fluctuations and a sensitive dependence on initial conditions are separated from the ones with a smooth variation of lifetimes by an object in phase space which we call the "edge of chaos." We describe techniques to identify and follow the edge, and our results indicate that the edge is a surface. For low Reynolds numbers we find that the surface coincides with the stable manifold of a periodic orbit, whereas at higher Reynolds numbers it is the stable set of a higher-dimensional chaotic object.
引用
收藏
页数:4
相关论文
共 18 条
[1]   Low-dimensional models of subcritical transition to turbulence [J].
Baggett, JS ;
Trefethen, LN .
PHYSICS OF FLUIDS, 1997, 9 (04) :1043-1053
[2]   The path towards a longer life: On invariant sets and the escape time landscape [J].
Bollt, EM .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (05) :1615-1624
[3]   Discontinuous transition to spatiotemporal intermittency in plane Couette flow [J].
Bottin, S ;
Daviaud, F ;
Manneville, P ;
Dauchot, O .
EUROPHYSICS LETTERS, 1998, 43 (02) :171-176
[4]   Statistical analysis of the transition to turbulence in plane Couette flow [J].
Bottin, S ;
Chate, H .
EUROPEAN PHYSICAL JOURNAL B, 1998, 6 (01) :143-155
[5]   Phase space analysis of a dynamical model for the subcritical transition to turbulence in plane Couette flow [J].
Dauchot, O ;
Vioujard, N .
EUROPEAN PHYSICAL JOURNAL B, 2000, 14 (02) :377-381
[6]   Transition to turbulence in a shear flow [J].
Eckhardt, B ;
Mersmann, A .
PHYSICAL REVIEW E, 1999, 60 (01) :509-517
[7]  
ECKHARDT B, 2004, P IUTAM S BRIST 2004
[8]   Sensitive dependence on initial conditions in transition to turbulence in pipe flow [J].
Faisst, H ;
Eckhardt, B .
JOURNAL OF FLUID MECHANICS, 2004, 504 :343-352
[9]   METAMORPHOSES OF BASIN BOUNDARIES IN NONLINEAR DYNAMIC-SYSTEMS [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1986, 56 (10) :1011-1014
[10]   Fractal dimensions of chaotic saddles of dynamical systems [J].
Hunt, BR ;
Ott, E ;
Yorke, JA .
PHYSICAL REVIEW E, 1996, 54 (05) :4819-4823