Effect of Zn doping on the performance of LiMnPO4 cathode for lithium ion batteries

被引:75
作者
Fang, Haisheng [1 ,2 ,3 ]
Yi, Huihua [1 ,2 ,3 ]
Hu, Chenglin [1 ,2 ,3 ]
Yang, Bin [1 ,2 ,3 ]
Yao, Yaochun [1 ,2 ,3 ]
Ma, Wenhui [1 ,2 ,3 ]
Dai, Yongnian [1 ,2 ,3 ]
机构
[1] Kunming Univ Sci & Technol, Fac Met & Energy Engn, Kunming 650093, Peoples R China
[2] Kunming Univ Sci & Technol, Natl Engn Lab Vacuum Met, Kunming 650093, Peoples R China
[3] Kunming Univ Sci & Technol, Key Lab Nonferrous Met Vacuum Met Yunnan Prov, Kunming 650093, Peoples R China
关键词
Lithium ion batteries; Cathode; Lithium manganese phosphate; Doping; Zinc; ELECTROCHEMICAL ACTIVITY; CATION SUBSTITUTION; MN; FE; MG; CO;
D O I
10.1016/j.electacta.2012.03.160
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this work, effect of Zn doping on the performance of LiMnPO4 is revisited. Samples of pure and Zn-doped LiMnPO4 are synthesized by a new solid-state method, and their structure, morphology and electrochemical behavior are characterized and compared. The results reveal that a small amount of Zn doping (2 at.%) is highly beneficial for the performance of LiMnPO4 due to the reduced charge transfer resistance, the increased lithium ion diffusion and phase conversion, but this effect is remarkably traded off at a high level of Zn doping (10 at.%). Compared with LiMnPO4, LiMn0.98Zn0.02PO4 has a much higher capacity and a much better rate capability. After 2 at.% Zn doping, the discharge capacity increases from 101 to 139 mAh g(-1) at 0.1 C and 56 to 105 mAh g(-1) at 2 C. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:266 / 269
页数:4
相关论文
共 24 条
[1]   LiMgxMn1-xPO4/C Cathodes for Lithium Batteries Prepared by a Combination of Spray Pyrolysis with Wet Ballmilling [J].
Bakenov, Zhumabay ;
Taniguchi, Izumi .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (04) :A430-A436
[2]   Electrochemical performance of nanocomposite LiMnPO4/C cathode materials for lithium batteries [J].
Bakenov, Zhumabay ;
Taniguchi, Izumi .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (01) :75-78
[3]   Improving the performance of lithium manganese phosphate through divalent cation substitution [J].
Chen, Guoying ;
Wilcox, James D. ;
Richardson, Thomas J. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (11) :A190-A194
[4]   LiMnPO4 Nanoplate Grown via Solid-State Reaction in Molten Hydrocarbon for Li-Ion Battery Cathode [J].
Choi, Daiwon ;
Wang, Donghai ;
Bae, In-Tae ;
Xiao, Jie ;
Nie, Zimin ;
Wang, Wei ;
Viswanathan, Vilayanur V. ;
Lee, Yun Jung ;
Zhang, Ji-Guang ;
Graff, Gordon L. ;
Yang, Zhenguo ;
Liu, Jun .
NANO LETTERS, 2010, 10 (08) :2799-2805
[5]   One-step low-temperature route for the preparation of electrochemically active LiMnPO4 powders [J].
Delacourt, C ;
Poizot, P ;
Morcrette, M ;
Tarascon, JM ;
Masquelier, C .
CHEMISTRY OF MATERIALS, 2004, 16 (01) :93-99
[6]   Effect of particle size on LiMnPO4 cathodes [J].
Drezen, Thierry ;
Kwon, Nam-Hee ;
Bowen, Paul ;
Teerlinck, Ivo ;
Isono, Motoshi ;
Exnar, Ivan .
JOURNAL OF POWER SOURCES, 2007, 174 (02) :949-953
[7]   Improving the electrochemical activity of LiMnPO4 via Mn-site co-substitution with Fe and Mg [J].
Hu, Chenglin ;
Yi, Huihua ;
Fang, Haisheng ;
Yang, Bin ;
Yao, Yaochun ;
Ma, Wenhui ;
Dai, Yongnian .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (12) :1784-1787
[8]   Mn based olivine electrode material with high power and energy [J].
Kim, Jongsoon ;
Seo, Dong-Hwa ;
Kim, Sung-Wook ;
Park, Young-Uk ;
Kang, Kisuk .
CHEMICAL COMMUNICATIONS, 2010, 46 (08) :1305-1307
[9]   Enhanced electrochemical performance of mesoparticulate LiMnPO4 for lithium ion batteries [J].
Kwon, NH ;
Drezen, T ;
Exnar, I ;
Teerlinck, I ;
Isono, M ;
Graetzel, M .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (06) :A277-A280
[10]   Electrochemical lithiation and delithiation of LiMnPO4: Effect of cation substitution [J].
Lee, Jong-Won ;
Park, Min-Sik ;
Anass, Benayad ;
Park, Jin-Hwan ;
Paik, Meen-Seon ;
Doo, Seok-Gwang .
ELECTROCHIMICA ACTA, 2010, 55 (13) :4162-4169