On c-optimal random variables

被引:52
作者
Ruschendorf, L [1 ]
机构
[1] INST MATH STOCHASTIK, D-79104 FREIBURG, GERMANY
关键词
optimal couplings; c-cyclically monotone functions; marginal problem;
D O I
10.1016/0167-7152(95)00078-X
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A characterization is proved for random variables which are optimal couplings w.r.t. a general function c. It turns out that on very general probability spaces optimal couplings can be characterized by generalized subgradients of c-convex functions. An interesting application of optimal couplings are minimal l(p)-metrics.
引用
收藏
页码:267 / 270
页数:4
相关论文
共 10 条
[1]   OPTIMAL COUPLING OF MULTIVARIATE DISTRIBUTIONS AND STOCHASTIC-PROCESSES [J].
CUESTAALBERTOS, JA ;
RUSCHENDORF, L ;
TUERODIAZ, A .
JOURNAL OF MULTIVARIATE ANALYSIS, 1993, 46 (02) :335-361
[2]  
Dietrich H., 1988, Optimization, V19, P355, DOI 10.1080/02331938808843352
[3]  
RACHEV ST, 1991, PROBABILITY METRIS S
[4]   A GENERAL DUALITY THEOREM FOR MARGINAL PROBLEMS [J].
RAMACHANDRAN, D ;
RUSCHENDORF, L .
PROBABILITY THEORY AND RELATED FIELDS, 1995, 101 (03) :311-319
[5]  
RAMACHANDRAN D, 1979, ISI LECT NOTES SER, V7
[6]  
RAMACHANDRAN D, 1979, ISI LECT NOTES SER, V5
[7]   A CHARACTERIZATION OF RANDOM-VARIABLES WITH MINIMUM L2-DISTANCE [J].
RUSCHENDORF, L ;
RACHEV, ST .
JOURNAL OF MULTIVARIATE ANALYSIS, 1990, 32 (01) :48-54
[8]  
RUSCHENDORF L, 1991, MATH APPL, V67, P151
[9]  
RUSCHENDORF L, 1993, IN PRESS APPL MATH
[10]   ON HOEFFDING-FRECHET BOUNDS AND CYCLIC MONOTONE RELATIONS [J].
SMITH, C ;
KNOTT, M .
JOURNAL OF MULTIVARIATE ANALYSIS, 1992, 40 (02) :328-334