MicroRNA profiling predicts a variance in the proliferative potential of cardiac progenitor cells derived from neonatal and adult murine hearts

被引:31
作者
Sirish, Padmini [1 ]
Lopez, Javier E. [1 ]
Li, Ning [1 ]
Wong, Andrew [1 ]
Timofeyev, Valeriy [1 ]
Young, J. Nilas [3 ]
Majdi, Maryam [4 ]
Li, Ronald A. [5 ,6 ,7 ]
Chen, Huei-sheng Vincent [4 ]
Chiamvimonvat, Nipavan [1 ,2 ]
机构
[1] Univ Calif Davis, Div Cardiovasc Med, Davis, CA 95616 USA
[2] No Calif Hlth Care Syst, Dept Vet Affairs, Mather, CA USA
[3] Univ Calif Davis, Med Ctr, Div Cardiothorac Surg, Sacramento, CA 95817 USA
[4] Sanford Burnham Med Res Inst, La Jolla, CA USA
[5] Mt Sinai Sch Med, Cardiovasc Res Ctr, New York, NY USA
[6] Univ Hong Kong, LKS Fac Med, Stem Cell & Regenerat Med Consortium, Dept Med, Hong Kong, Hong Kong, Peoples R China
[7] Univ Hong Kong, LKS Fac Med, Stem Cell & Regenerat Med Consortium, Dept Physiol, Hong Kong, Hong Kong, Peoples R China
关键词
Cardiac progenitor cells; c-kit; MicroRNA profiling; Proliferation; miR-17; cluster; STEM-CELLS; DIFFERENTIATION; EXPRESSION; MIR-17-92; CLUSTER; MULTIPOTENT; INFARCTION; EXPANSION; THERAPY; TARGETS;
D O I
10.1016/j.yjmcc.2011.10.012
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Cardiac progenitor cells (CPCs) are multipotent cells that may offer tremendous potentials for the regeneration of injured myocardium. To expand the limited number of CPCs for effective clinical regeneration of myocardium, it is important to understand their proliferative potentials. Single-cell based assays were utilized to purify c-kit(pos) CPCs from human and mouse hearts. MicroRNA profiling identified eight differentially expressed microRNAs in CPCs from neonatal and adult hearts. Notably, the predicted protein targets were predominantly involved in cellular proliferation-related pathways. To directly test this phenotypic prediction, the developmental variance in the proliferation of CPCs was tested. Ki67 protein expression and DNA kinetics were tested in human and mouse in vivo CPCs, and doubling times were tested in primary culture of mouse CPCs. The human embryonic and mouse neonatal CPCs showed a six-fold increase in Ki67 expressing cells, a two-fold increase in the number of cells in S/G2-M phases of cell cycle, and a seven-fold increase in the doubling time in culture when compared to the corresponding adult CPCs. The over-expression of miR-17-92 increased the proliferation in adult CPCs in vivo by two-fold. In addition, the level of retinoblastoma-like 2 (Rb12/p130) protein was two-fold higher in adult compared to neonatal-mouse CPCs. In conclusion, we demonstrate a differentially regulated cohort of microRNAs that predicts differences in cellular proliferation in CPCs during postnatal development and target microRNAs that are involved in this transition. Our study provides new insights that may enhance the utilization of adult CPCs for regenerative therapy of the injured myocardium. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:264 / 272
页数:9
相关论文
共 49 条
[41]   Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure [J].
Urbanek, K ;
Torella, D ;
Sheikh, F ;
De Angelis, A ;
Nurzynska, D ;
Silvestri, F ;
Beltrami, CA ;
Bussani, R ;
Beltrami, AP ;
Quaini, F ;
Bolli, R ;
Leri, A ;
Kajstura, J ;
Anversa, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (24) :8692-8697
[42]   The Art of MicroRNA Research [J].
van Rooij, Eva .
CIRCULATION RESEARCH, 2011, 108 (02) :219-234
[43]   Targeted deletion reveals essential and overlapping functions of the miR-17∼92 family of miRNA clusters [J].
Ventura, Andrea ;
Young, Amanda G. ;
Winslow, Monte M. ;
Lintault, Laura ;
Meissner, Alex ;
Erkeland, Stefan J. ;
Newman, Jamie ;
Bronson, Roderick T. ;
Crowley, Denise ;
Stone, James R. ;
Jaenisch, Rudolf ;
Sharp, Phillip A. ;
Jacks, Tyler .
CELL, 2008, 132 (05) :875-886
[44]   miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating. tumor-suppressor Rb2/p130 [J].
Wang, Qiang ;
Li, Yan Chun ;
Wang, Jinhua ;
Kong, Juan ;
Qi, Yuchen ;
Quigg, Richard J. ;
Li, Xinmin .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (08) :2889-2894
[45]   Dynamic MicroRNA Expression Programs During Cardiac Differentiation of Human Embryonic Stem Cells Role for miR-499 [J].
Wilson, Kitchener D. ;
Hu, Shijun ;
Venkatasubrahmanyam, Shivkumar ;
Fu, Ji-Dong ;
Sun, Ning ;
Abilez, Oscar J. ;
Baugh, Joshua J. A. ;
Jia, Fangjun ;
Ghosh, Zhumur ;
Li, Ronald A. ;
Butte, Atul J. ;
Wu, Joseph C. .
CIRCULATION-CARDIOVASCULAR GENETICS, 2010, 3 (05) :426-U97
[46]   Clinical applications of stem cells for the heart [J].
Wollert, KC ;
Drexler, H .
CIRCULATION RESEARCH, 2005, 96 (02) :151-163
[47]   Cardiomyogenic Potential of C-Kit+-Expressing Cells Derived From Neonatal and Adult Mouse Hearts [J].
Zaruba, Marc-Michael ;
Soonpaa, Mark ;
Reuter, Sean ;
Field, Loren J. .
CIRCULATION, 2010, 121 (18) :1992-U56
[48]   Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis [J].
Zhao, Y ;
Samal, E ;
Srivastava, D .
NATURE, 2005, 436 (7048) :214-220
[49]   Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2 [J].
Zhao, Yong ;
Ransom, Joshua F. ;
Li, Ankang ;
Vedantham, Vasanth ;
von Drehle, Morgan ;
Muth, Alecia N. ;
Tsuchihashi, Takatoshi ;
McManus, Michael T. ;
Schwartz, Robert J. ;
Srivastava, Deepak .
CELL, 2007, 129 (02) :303-317