Influence of active nitrogen species on high temperature limitations for (000(1)under-bar) GaN growth by rf plasma-assisted molecular beam epitaxy

被引:37
作者
Myers, TH [1 ]
Millecchia, MR
Ptak, AJ
Ziemer, KS
Stinespring, CD
机构
[1] W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA
[2] W Virginia Univ, Dept Chem Engn, Morgantown, WV 26506 USA
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B | 1999年 / 17卷 / 04期
关键词
D O I
10.1116/1.590805
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A reduced growth rate for plasma-assisted molecular beam epitaxy GaN growth often limits growth to temperatures less than 750 degrees C. The growth rate reduction is significantly larger than expected based on thermal decomposition. Characterization of various rf plasma source configurations indicated that a flux consisting predominantly of either atomic nitrogen or nitrogen metastables can be produced. The use of atomic nitrogen, possibly coupled with the presence of low energy ions, is associated with the premature decrease in growth rate. When the active nitrogen flux consists primarily of nitrogen metastables, the temperature dependence of the decrease is more consistent with decomposition rates. A significant improvement in electrical properties is observed for growth with molecular nitrogen metastables. In addition, atomic hydrogen stabilizes the growing surface of (000 (1) under bar) GaN. (C) 1999 American Vacuum Society. [S0734-211X(99)03304-1].
引用
收藏
页码:1654 / 1658
页数:5
相关论文
共 27 条
[1]   Studies of GaN layers grown on sapphire using an RF-source [J].
Andersson, TG ;
Nozawa, K ;
Horikoshi, Y .
JOURNAL OF CRYSTAL GROWTH, 1997, 175 :117-121
[2]  
BARTRAM ME, 1999, MRS INTERNET J NITRI
[3]  
Buczkowski SL, 1997, MATER RES SOC SYMP P, V449, P197
[4]   Plasma assisted molecular beam epitaxy growth of GaN [J].
Einfeldt, S ;
Birkle, U ;
Thomas, C ;
Fehrer, M ;
Heinke, H ;
Hommel, D .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1997, 50 (1-3) :12-15
[5]   In situ control of GaN growth by molecular beam epitaxy [J].
Held, R ;
Crawford, DE ;
Johnston, AM ;
Dabiran, AM ;
Cohen, PI .
JOURNAL OF ELECTRONIC MATERIALS, 1997, 26 (03) :272-280
[6]   Molecular beam epitaxy growth and properties of GaN, InGaN, and GaN/InGaN quantum well structures [J].
Johnson, MAL ;
Brown, JD ;
El-Masry, NA ;
Cook, JW ;
Schetzina, JF ;
Kong, HS ;
Edmond, JA .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1998, 16 (03) :1282-1285
[7]   Reactive MBE growth of GaN and GaN:H on GaN/SiC substrates [J].
Johnson, MAL ;
Yu, ZH ;
Boney, C ;
Hughes, WC ;
Cook, JW ;
Schetzina, JF ;
Zhao, H ;
Skromme, BJ ;
Edmond, JA .
III-V NITRIDES, 1997, 449 :215-220
[8]   Enhanced GaN decomposition in H2 near atmospheric pressures [J].
Koleske, DD ;
Wickenden, AE ;
Henry, RL ;
Twigg, ME ;
Culbertson, JC ;
Gorman, RJ .
APPLIED PHYSICS LETTERS, 1998, 73 (14) :2018-2020
[9]   Growth model for GaN with comparison to structural, optical, and electrical properties [J].
Koleske, DD ;
Wickenden, AE ;
Henry, RL ;
DeSisto, WJ ;
Gorman, RJ .
JOURNAL OF APPLIED PHYSICS, 1998, 84 (04) :1998-2010
[10]   MOLECULAR-BEAM EPITAXY OF GAN(0001) UTILIZING NH3 AND/OR NHX+ IONS - GROWTH-KINETICS AND DEFECT STRUCTURE [J].
LEE, NE ;
POWELL, RC ;
KIM, YW ;
GREENE, JE .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 1995, 13 (05) :2293-2302