Fluorescence studies of pyrene maleimide-labeled translin: Excimer fluorescence indicates subunits associate in a tail-to-tail configuration to form octamer

被引:21
作者
Han, MK [1 ]
Lin, P
Paek, D
Harvey, JJ
Fuior, E
Knutson, JR
机构
[1] Georgetown Univ, Med Ctr, Dept Microbiol & Immunol, Washington, DC 20007 USA
[2] NHLBI, Biophys Chem Lab, NIH, Bethesda, MD 20892 USA
关键词
D O I
10.1021/bi015901e
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Translin is an octameric single-stranded DNA binding protein consisting of 228 amino acid residues per monomer. This protein contains two cysteine residues per monomer. Studies of reactions with DTNB show that both cysteines are reactive and exhibit biphasic reaction kinetics. Further studies with two site-directed mutants, C58S and C225S, confirm that Cys-58 reacts slowly while Cys-225 reacts quickly. Pyrene excimer emission was observed for pyrene maleimide-labeled C58S mutant. This was not observed, however, with the pyrene maleimide-labeled C225S mutant. DAS (decay associated spectra) revealed that all excited pyrene labels on C225 residues can form excimers with pyrenes of adjacent subunits within a few nanoseconds. Time-resolved emission anisotropy detects a rotational correlation time appropriate for octameric but not dimeric species. These results indicate proximity for the Cys-225 residues on adjacent monomers and that the subunits must interact in a tail-to-tail orientation. Moreover, disulfide bonds are not required for the formation of an octamer.
引用
收藏
页码:3468 / 3476
页数:9
相关论文
共 40 条
[1]   A NOVEL GENE, TRANSLIN, ENCODES A RECOMBINATION HOTSPOT BINDING-PROTEIN ASSOCIATED WITH CHROMOSOMAL TRANSLOCATIONS [J].
AOKI, K ;
SUZUKI, K ;
SUGANO, T ;
TASAKA, T ;
NAKAHARA, K ;
KUGE, O ;
OMORI, A ;
KASAI, M .
NATURE GENETICS, 1995, 10 (02) :167-174
[2]   Genomic structure and chromosomal localization of the gene encoding translin, a recombination hotspot binding protein [J].
Aoki, K ;
Inazawa, J ;
Takahashi, T ;
Nakahara, K ;
Kasai, M .
GENOMICS, 1997, 43 (02) :237-241
[3]  
Beechem J. M., 2002, TOPICS FLUORESCENCE, P241, DOI DOI 10.1007/0-306-47058-6_5
[4]   GLOBAL ANALYSIS OF FLUORESCENCE DECAY SURFACES - EXCITED-STATE REACTIONS [J].
BEECHEM, JM ;
AMELOOT, M ;
BRAND, L .
CHEMICAL PHYSICS LETTERS, 1985, 120 (4-5) :466-472
[5]   GLOBAL ANALYSIS OF MULTIPLE DYE FLUORESCENCE ANISOTROPY EXPERIMENTS ON PROTEINS [J].
BEECHEM, JM ;
KNUTSON, JR ;
BRAND, L .
BIOCHEMICAL SOCIETY TRANSACTIONS, 1986, 14 (05) :832-835
[6]  
BETCHERLANGE SL, 1978, J BIOL CHEM, V253, P3757
[7]  
BOROSS L, 1969, ARCH BIOCHEM BIOPHYS, V2, P47
[8]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[9]  
Bu''nau G. v., 1970, RANG DALESPHARMACOLO, V74, P1294, DOI [10.1002/bbpc.19700741223, DOI 10.1002/BBPC.19700741223]
[10]   DIMERS, LEUCINE ZIPPERS AND DNA-BINDING DOMAINS [J].
BUSCH, SJ ;
SASSONECORSI, P .
TRENDS IN GENETICS, 1990, 6 (02) :36-40