Differential expression of miRNAs in response to salt stress in maize roots

被引:372
作者
Ding, Dong [1 ]
Zhang, Lifang [2 ]
Wang, Hang [1 ]
Liu, Zhijie [1 ]
Zhang, Zuxin [3 ]
Zheng, Yonglian [1 ]
机构
[1] Huazhong Agr Univ, Natl Key Lab Crop Genet Improvement, Wuhan 430070, Peoples R China
[2] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA
[3] Hebei Agr Univ, Coll Agron, Baoding 071001, Peoples R China
关键词
ORYZA-SATIVA L; ARABIDOPSIS-THALIANA; ABIOTIC STRESS; TRANSCRIPTION FACTOR; SMALL RNAS; REGULATED MICRORNAS; ENHANCES DROUGHT; PLANT MICRORNAS; TARGET GENES; RICE;
D O I
10.1093/aob/mcn205
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Corn (Zea mays) responds to salt stress via changes in gene expression, metabolism and physiology. This adaptation is achieved through the regulation of gene expression at the transcriptional and post-transcriptional levels. MicroRNAs (miRNAs) have been found to act as key regulating factors of post-transcriptional gene expression. However, little is known about the role of miRNAs in plants' responses to abiotic stresses. A custom mu paraflo (TM) microfluidic array containing release version 10.1 plant miRNA probes (http://microrna.sanger.ac.uk/) was used to discover salt stress-responsive miRNAs using the differences in miRNA expression between the salt-tolerant maize inbred line 'NC286' and the salt-sensitive maize line 'Huangzao4'. miRNA microarray hybridization revealed that a total of 98 miRNAs, from 27 plant miRNA families, had significantly altered expression after salt treatment. These miRNAs displayed different activities in the salt response, and miRNAs belonging to the same miRNA family showed the same behaviour. Interestingly, 18 miRNAs were found which were only expressed in the salt-tolerant maize line, and 25 miRNAs that showed a delayed regulation pattern in the salt-sensitive line. A gene model was proposed that showed how miRNAs could regulate the abiotic stress-associated process and the gene networks coping with the stress. Salt-responsive miRNAs are involved in the regulation of metabolic, morphological and physiological adaptations of maize seedlings at the post-transcriptional level. The miRNA genotype-specific expression model might explain the distinct salt sensitivities between maize lines.
引用
收藏
页码:29 / 38
页数:10
相关论文
共 50 条
[1]   A genome-wide survey of HD-Zip genes in rice and analysis of drought-responsive family members [J].
Agalou, Adamantia ;
Purwantomo, Sigit ;
Oevernaes, Elin ;
Johannesson, Henrik ;
Zhu, Xiaoyi ;
Estiati, Amy ;
de Kam, Rolf J. ;
Engstroem, Peter ;
Slamet-Loedin, Inez H. ;
Zhu, Zhen ;
Wang, Mei ;
Xiong, Lizhong ;
Meijer, Annemarie H. ;
Ouwerkerk, Pieter B. F. .
PLANT MOLECULAR BIOLOGY, 2008, 66 (1-2) :87-103
[2]  
BANU M, 2008, J PLANT PHYSL
[3]   Detection of 91 potential in plant conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes [J].
Bonnet, E ;
Wuyts, J ;
Rouzé, P ;
Van de Peer, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (31) :11511-11516
[4]   Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis [J].
Borsani, O ;
Zhu, JH ;
Verslues, PE ;
Sunkar, R ;
Zhu, JK .
CELL, 2005, 123 (07) :1279-1291
[5]   Class III HD-Zip gene regulation, the golden fleece of ARGONAUTE activity? [J].
Bowman, JL .
BIOESSAYS, 2004, 26 (09) :938-942
[6]   Trans-splicing and polyadenylation of let-7 microRNA primary transcripts [J].
Bracht, J ;
Hunter, S ;
Eachus, R ;
Weeks, P ;
Pasquinelli, AE .
RNA, 2004, 10 (10) :1586-1594
[7]   Widespread translational inhibition by plant miRNAs and siRNAs [J].
Brodersen, Peter ;
Sakvarelidze-Achard, Lali ;
Bruun-Rasmussen, Marianne ;
Dunoyer, Patrice ;
Yamamoto, Yoshiharu Y. ;
Sieburth, Leslie ;
Voinnet, Olivier .
SCIENCE, 2008, 320 (5880) :1185-1190
[8]   Genes for control of plant stature and form [J].
Busov, Victor B. ;
Brunner, Amy M. ;
Strauss, Steven H. .
NEW PHYTOLOGIST, 2008, 177 (03) :589-607
[9]   Real-time quantification of microRNAs by stem-loop RT-PCR [J].
Chen, CF ;
Ridzon, DA ;
Broomer, AJ ;
Zhou, ZH ;
Lee, DH ;
Nguyen, JT ;
Barbisin, M ;
Xu, NL ;
Mahuvakar, VR ;
Andersen, MR ;
Lao, KQ ;
Livak, KJ ;
Guegler, KJ .
NUCLEIC ACIDS RESEARCH, 2005, 33 (20) :e179.1-e179.9
[10]   A cytosolic NADP-malic enzyme gene from rice (Oryza sativa L.) confers salt tolerance in transgenic Arabidopsis [J].
Cheng, Yuxiang ;
Long, Mei .
BIOTECHNOLOGY LETTERS, 2007, 29 (07) :1129-1134