Brain-derived neurotrophic factor inhibits apoptosis and dopamine-induced free radical production in striatal neurons but does not prevent cell death

被引:52
作者
Petersén, Å
Larsen, KE
Behr, GG
Romero, N
Przedborski, S
Brundin, P
Sulzer, D
机构
[1] Columbia Univ, Dept Neurol, New York, NY 10032 USA
[2] Columbia Univ, Dept Psychiat, New York, NY 10032 USA
[3] Lund Univ, Wallenberg Neurosci Ctr, Sect Neuronal Survival, S-22101 Lund, Sweden
[4] New York State Psychiat Inst & Hosp, Dept Neurosci, New York, NY 10032 USA
关键词
Huntington's disease; autophagy; DARPP-32; medium spiny neuron;
D O I
10.1016/S0361-9230(01)00580-9
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In hereditary Huntington's disease, a triplet repeat disease, there is extensive loss of striatal neurons. It has been shown that brain-derived neurotrophic factor (BDNF) protects striatal neurons against a variety of insults. We confirmed that BDNF enhances survival and DARPP-32 expression in primary striatal cultures derived from postnatal mice. Furthermore, BDNF inhibited intracellular oxyradical stress triggered by dopamine, and partially blocked basal and dopamine-induced apoptosis. Nevertheless, BDNF failed to rescue striatal neurons from dopamine-induced cell death. Therefore, BDNF inhibits free radical and apoptotic pathways in medium spiny neurons, but does so downstream from the point of commitment to cell death. (C) 2001 Elsevier Science Inc.
引用
收藏
页码:331 / 335
页数:5
相关论文
共 35 条
[1]   IMMUNOHISTOCHEMICAL LOCALIZATION OF DARPP-32 IN STRIATAL PROJECTION NEURONS AND STRIATAL INTERNEURONS - IMPLICATIONS FOR THE LOCALIZATION OF D1-LIKE DOPAMINE-RECEPTORS ON DIFFERENT TYPES OF STRIATAL NEURONS [J].
ANDERSON, KD ;
REINER, A .
BRAIN RESEARCH, 1991, 568 (1-2) :235-243
[2]   GLUTAMATE-INDUCED NEURONAL DEATH - A SUCCESSION OF NECROSIS OR APOPTOSIS DEPENDING ON MITOCHONDRIAL-FUNCTION [J].
ANKARCRONA, M ;
DYPBUKT, JM ;
BONFOCO, E ;
ZHIVOTOVSKY, B ;
ORRENIUS, S ;
LIPTON, SA ;
NICOTERA, P .
NEURON, 1995, 15 (04) :961-973
[3]   Brain-derived neurotrophic factor-mediated protection of striatal neurons in an excitotoxic rat model of Huntington's disease, as demonstrated by adenoviral gene transfer [J].
Bemelmans, AP ;
Horellou, P ;
Pradier, L ;
Brunet, I ;
Colin, P ;
Mallet, J .
HUMAN GENE THERAPY, 1999, 10 (18) :2987-2997
[4]   APOPTOSIS AND NECROSIS - 2 DISTINCT EVENTS INDUCED, RESPECTIVELY, BY MILD AND INTENSE INSULTS WITH N-METHYL-D-ASPARTATE OR NITRIC-OXIDE SUPEROXIDE IN CORTICAL CELL-CULTURES [J].
BONFOCO, E ;
KRAINC, D ;
ANKARCRONA, M ;
NICOTERA, P ;
LIPTON, SA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (16) :7162-7166
[5]   Differential neurotoxicity induced by L-DOPA and dopamine in cultured striatal neurons [J].
Cheng, NN ;
Maeda, T ;
Kume, T ;
Kaneko, S ;
Kochiyama, H ;
Akaike, A ;
Goshima, Y ;
Misu, Y .
BRAIN RESEARCH, 1996, 743 (1-2) :278-283
[6]   METHAMPHETAMINE NEUROTOXICITY INVOLVES VACUOLATION OF ENDOCYTIC ORGANELLES AND DOPAMINE-DEPENDENT INTRACELLULAR OXIDATIVE STRESS [J].
CUBELLS, JF ;
RAYPORT, S ;
RAJENDRAN, G ;
SULZER, D .
JOURNAL OF NEUROSCIENCE, 1994, 14 (04) :2260-2271
[7]   Brain-derived neurotrophic factor in Huntington disease [J].
Ferrer, I ;
Goutan, E ;
Marín, C ;
Rey, MJ ;
Ribalta, T .
BRAIN RESEARCH, 2000, 866 (1-2) :257-261
[8]   PRESYNAPTIC AND POSTSYNAPTIC NEUROTOXIC EFFECTS OF DOPAMINE DEMONSTRATED BY INTRASTRIATAL INJECTION [J].
FILLOUX, F ;
TOWNSEND, JJ .
EXPERIMENTAL NEUROLOGY, 1993, 119 (01) :79-88
[9]   THE NEOSTRIATAL MOSAIC - MULTIPLE LEVELS OF COMPARTMENTAL ORGANIZATION [J].
GERFEN, CR .
TRENDS IN NEUROSCIENCES, 1992, 15 (04) :133-139
[10]   Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections [J].
Hastings, TG ;
Lewis, DA ;
Zigmond, MJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (05) :1956-1961