About fractional supersymmetric quantum mechanics

被引:22
作者
Baleanu, D [1 ]
Muslih, SI
机构
[1] Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
[2] Al Azhar Univ, Dept Phys, Gaza, Palestine, Israel
关键词
fractional calculus; Grassmann variables;
D O I
10.1007/s10582-005-0106-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Fractional Euler-Lagrange equations are investigated in the presence of Grassmann variables. The fractional Hamiltonian and the path integral of the fractional supersymmetric classical model are constructed.
引用
收藏
页码:1063 / 1066
页数:4
相关论文
共 20 条
[1]   Formulation of Euler-Lagrange equations for fractional variational problems [J].
Agrawal, OP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 272 (01) :368-379
[2]  
[Anonymous], APPL FRACTION CALCUL
[3]   Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives [J].
Baleanu, D ;
Muslih, SI .
PHYSICA SCRIPTA, 2005, 72 (2-3) :119-121
[4]   Lagrangians with linear velocities within Riemann-Liouville fractional derivatives [J].
Baleanu, D ;
Avkar, T .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2004, 119 (01) :73-79
[5]   Anomalous diffusion and fractional advection-diffusion equation [J].
Chang, FX ;
Chen, J ;
Huang, W .
ACTA PHYSICA SINICA, 2005, 54 (03) :1113-1117
[6]   FRACTIONAL SUPERSYMMETRY AND QUANTUM-MECHANICS [J].
DURAND, S .
PHYSICS LETTERS B, 1993, 312 (1-2) :115-120
[7]   Fractional calculus description of non-linear viscoelastic behaviour of polymers [J].
Heymans, N .
NONLINEAR DYNAMICS, 2004, 38 (1-4) :221-231
[9]   Lagrangean and Hamiltonian fractional sequential mechanics [J].
Klimek, M .
CZECHOSLOVAK JOURNAL OF PHYSICS, 2002, 52 (11) :1247-1253
[10]   SUPERSYMMETRY IN QUANTUM-MECHANICS [J].
LAHIRI, A ;
ROY, PK ;
BAGCHI, B .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1990, 5 (08) :1383-1456