Periodic and homoclinic orbits for Lorentz-Lagrangian systems via variational methods

被引:43
作者
Buffoni, B
机构
[1] School of Mathematical Sciences, University of Bath, Claverton Down
关键词
Lorentz-Lagrangian systems; periodic and homoclinic solutions; variational methods; maximal geodesics; rotating potential;
D O I
10.1016/0362-546X(94)00290-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:443 / 462
页数:20
相关论文
共 14 条
[1]  
Amick C. J., 1991, Eur. J. Appl. Math., V3, P97
[2]   POINTS OF EGRESS IN PROBLEMS OF HAMILTONIAN-DYNAMICS [J].
AMICK, CJ ;
TOLAND, JF .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1991, 109 :405-417
[3]   POSITIVE SOLUTIONS OF SOME NONLINEAR ELLIPTIC PROBLEMS IN EXTERIOR DOMAINS [J].
BENCI, V ;
CERAMI, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1987, 99 (04) :283-300
[4]  
BREZIS H, 1991, COMMUNS PURE APPL MA, V44
[5]   GLOBAL EXISTENCE OF HOMOCLINIC AND PERIODIC-ORBITS FOR A CLASS OF AUTONOMOUS HAMILTONIAN-SYSTEMS [J].
BUFFONI, B ;
TOLAND, JF .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 118 (01) :104-120
[6]   BIFURCATION OF A PLETHORA OF MULTIMODAL HOMOCLINIC ORBITS FOR AUTONOMOUS HAMILTONIAN-SYSTEMS [J].
CHAMPNEYS, AR ;
TOLAND, JF .
NONLINEARITY, 1993, 6 (05) :665-721
[7]  
Hawking S. W., 2011, LARGE SCALE STRUCTUR
[8]   HOMOCLINIC, HETEROCLINIC, AND PERIODIC-ORBITS FOR A CLASS OF INDEFINITE HAMILTONIAN-SYSTEMS [J].
HOFER, H ;
TOLAND, J .
MATHEMATISCHE ANNALEN, 1984, 268 (03) :387-403
[9]   CALCULUS OF VARIATIONS IN THE LARGE AND CLASSICAL MECHANICS [J].
KOZLOV, VV .
RUSSIAN MATHEMATICAL SURVEYS, 1985, 40 (02) :37-71
[10]  
LIONS PL, 1984, ANN I H POINCARE-AN, V1, P223