Significantly Improved Long-Cycle Stability in High-Rate Li-S Batteries Enabled by Coaxial Graphene Wrapping over Sulfur-Coated Carbon Nanofibers

被引:322
作者
Lu, Songtao [1 ,2 ]
Cheng, Yingwen [1 ]
Wu, Xiaohong [1 ,2 ]
Liu, Jie [1 ]
机构
[1] Duke Univ, Dept Chem, Durham, NC 27708 USA
[2] Harbin Inst Technol, Dept Chem, Harbin 150001, Peoples R China
基金
美国国家科学基金会;
关键词
Li-S battery; Graphene; carbon nanofiber; stability; ENERGY MANAGEMENT; HIGH-CAPACITY; LITHIUM; CATHODE; COMPOSITE; PERFORMANCE; ELECTRODES; NANOTUBES; STORAGE; OXIDE;
D O I
10.1021/nl400543y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Long-term instability of Li-S batteries is one of their major disadvantages compare to other secondary batteries. The reasons for the instability include dissolution of polysulfide intermediates and mechanical instability of the electrode film caused by volume changes during charging/discharging cycles. In this paper, we report a novel graphene-sulfur-carbon nanofibers (G-S-CNFs) multilayer and-coaxial nanocomposite for the cathode of Li-S batteries with increased capacity and significantly improved long cycle stability. Electrodes made with such nanocornposites were able to deliver a reversible capacity of 694 mA h g(-1) at 0.1C and 313 mA h g(-1) at 2C, which are both substantially higher than electrodes assembled without graphene wrapping. More importantly, the long cycle stability was significantly improved by graphene wrapping. The cathode made with G-S-CNFs with a initial capacity of 745 mA h g(-1) was able to maintain similar to 273 mA h g(-1) even after 1500 charge-discharge cycles at a high rate of 1C, representing an extremely low decay rate (0.043% per cycle after 1500 cycles). In contrast, the capacity of an electrode assembled without graphene wrapping decayed dramatically with a 10 times high rate (similar to 0.40% per cycle after 200 cycles). These results demonstrate that the coaxial nanocomposites are of great potential as the cathode for high-rate rechargeable Li-S batteries. Such improved rate capability and cycle stability could be attributed to the unique coaxial architecture of the nanocomposite, in which the contributions from graphene and CNFs enable electrodes with improved electrical conductivity, better ability to trap soluble the polysulfides intermediate and accommodate volume expansion/shrinkage of sulfur during repeated charge/discharge cycles.
引用
收藏
页码:2485 / 2489
页数:5
相关论文
共 43 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[3]   Lithium-air and lithium-sulfur batteries [J].
Bruce, Peter G. ;
Hardwick, Laurence J. ;
Abraham, K. M. .
MRS BULLETIN, 2011, 36 (07) :506-512
[4]   Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries [J].
Cao, Yuliang ;
Li, Xiaolin ;
Aksay, Ilhan A. ;
Lemmon, John ;
Nie, Zimin ;
Yang, Zhenguo ;
Liu, Jun .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (17) :7660-7665
[5]  
Chaudhuri R. G., 2010, COLLOID INTERFACE SC, V343, P439
[6]   High capacity vertical aligned carbon nanotube/sulfur composite cathodes for lithium-sulfur batteries [J].
Doerfler, Susanne ;
Hagen, Markus ;
Althues, Holger ;
Tuebke, Jens ;
Kaskel, Stefan ;
Hoffmann, Michael J. .
CHEMICAL COMMUNICATIONS, 2012, 48 (34) :4097-4099
[7]   Sulfur-Impregnated Activated Carbon Fiber Cloth as a Binder-Free Cathode for Rechargeable Li-S Batteries [J].
Elazari, Ran ;
Salitra, Gregory ;
Garsuch, Arnd ;
Panchenko, Alexander ;
Aurbach, Doron .
ADVANCED MATERIALS, 2011, 23 (47) :5641-+
[8]   Morphological and Structural Studies of Composite Sulfur Electrodes upon Cycling by HRTEM, AFM and Raman Spectroscopy [J].
Elazari, Ran ;
Salitra, Gregory ;
Talyosef, Yossi ;
Grinblat, Judith ;
Scordilis-Kelley, Charislea ;
Xiao, Ang ;
Affinito, John ;
Aurbach, Doron .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (10) :A1131-A1138
[9]   A wavelet-fuzzy logic based energy management strategy for a fuel cell/battery/ultra-capacitor hybrid vehicular power system [J].
Erdinc, O. ;
Vural, B. ;
Uzunoglu, M. .
JOURNAL OF POWER SOURCES, 2009, 194 (01) :369-380
[10]   Understanding the Nature of Absorption/Adsorption in Nanoporous Polysulfide Sorbents for the Li-S Battery [J].
Evers, Scott ;
Yim, Taeeun ;
Nazar, Linda F. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (37) :19653-19658