Wave front for a reaction-diffusion system and relativistic Hamilton-Jacobi dynamics

被引:29
作者
Fedotov, S [1 ]
机构
[1] UMIST, Dept Math, Manchester M60 1QD, Lancs, England
来源
PHYSICAL REVIEW E | 1999年 / 59卷 / 05期
关键词
D O I
10.1103/PhysRevE.59.5040
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The problem of wave-front propagation for the n-dimensional reaction-diffusion system involving Kolmogorov-Petrovskii-Piskunov kinetics and the diffusion transport with a finite velocity has been considered. By using a scaling procedure we have given an asymptotic derivation of the equation governing the evolution of a reaction front in the long-time large-distance limit. It has been found that this equation is identical in form to the relativistic Hamilton-Jacobi equation. In the case of a constant value of chemical rate function we have derived exact formulas for the position of reaction front and the speed of propagation by using relativistic mechanics techniques. [S1063-651X(99)09005-4].
引用
收藏
页码:5040 / 5044
页数:5
相关论文
共 25 条
[1]  
[Anonymous], 1986, REACTION DIFFUSION E
[2]  
ARONSON D. G., 1975, LECT NOTES MATH, V446
[3]   WAVE-FRONT PROPAGATION FOR REACTION-DIFFUSION SYSTEMS OF PDE [J].
BARLES, G ;
EVANS, LC ;
SOUGANDIS, PE .
DUKE MATHEMATICAL JOURNAL, 1990, 61 (03) :835-858
[4]   MICROSCOPIC SELECTION PRINCIPLE FOR A DIFFUSION-REACTION EQUATION [J].
BRAMSON, M ;
CALDERONI, P ;
DEMASI, A ;
FERRARI, P ;
LEBOWITZ, J ;
SCHONMANN, RH .
JOURNAL OF STATISTICAL PHYSICS, 1986, 45 (5-6) :905-920
[5]   STUDIES OF THE TURBULENT BURNING VELOCITY [J].
BRAY, KNC .
PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1990, 431 (1882) :315-335
[6]   SOME PROPERTIES OF VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
EVANS, LC ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (02) :487-502
[7]   Stochastic generalised KPP equations [J].
Davies, IM ;
Truman, A ;
Zhao, HZ .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1996, 126 :957-983
[8]  
DEMASI A, 1984, STUDIES STAT MECH, V2
[9]   A PDE APPROACH TO GEOMETRIC OPTICS FOR CERTAIN SEMILINEAR PARABOLIC EQUATIONS [J].
EVANS, LC ;
SOUGANIDIS, PE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1989, 38 (01) :141-172
[10]   Traveling waves in a reaction-diffusion system: Diffusion with finite velocity and Kolmogorov-Petrovskii-Piskunov kinetics [J].
Fedotov, S .
PHYSICAL REVIEW E, 1998, 58 (04) :5143-5145