Toric degenerations of Schubert varieties

被引:57
作者
Caldero, P [1 ]
机构
[1] Univ Lyon 1, Inst Girard Desargues, F-69622 Villeurbanne, France
关键词
D O I
10.1007/s00031-002-0003-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simply connected semisimple complex algebraic group. We prove that every Schubert variety of G has a flat degeneration into a toric variety. This provides a generalization of results of [9], [7], [6]. Our basic tool is Lusztig's canonical basis and the string parametrization of this basis.
引用
收藏
页码:51 / 60
页数:10
相关论文
共 17 条
[1]   Tensor product multiplicities, canonical bases and totally positive varieties [J].
Berenstein, A ;
Zelevinsky, A .
INVENTIONES MATHEMATICAE, 2001, 143 (01) :77-128
[2]  
Berenstein A., 1993, ADV SOVIET MATH, P51
[3]  
CALDERO P, 1994, B SCI MATH, V118, P177
[4]  
CALDERO P, 1993, CR ACAD SCI I-MATH, V316, P327
[5]   LS algebras and application to Schubert varieties [J].
Chirivì, R .
TRANSFORMATION GROUPS, 2000, 5 (03) :245-264
[6]   Lattice polytopes associated to certain Demazure modules of sln+1 [J].
Dehy, R ;
Yu, RWT .
JOURNAL OF ALGEBRAIC COMBINATORICS, 1999, 10 (02) :149-172
[7]   Polytopes associated to demazure modules of symmetrizable Kac-Moody algebras of rank two [J].
Dehy, R .
JOURNAL OF ALGEBRA, 2000, 228 (01) :60-90
[8]  
DEHY R, MATHRT0012124
[9]  
Gonciulea N., 1996, Transform. Groups, V1, P215, DOI 10.1007/BF02549207
[10]  
Jantzen J. C, 1996, GRADUATE STUDIES MAT, V6, pviii