PJ -: symmetric harmonic oscillators

被引:224
作者
Znojil, M [1 ]
机构
[1] Ustav Jaderne Fyz AV CR, Rez 25068, Czech Republic
关键词
D O I
10.1016/S0375-9601(99)00429-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Within the framework of the recently proposed formalism using non-hermitean Hamiltonians constrained merely by their PJ invariance we describe a new exactly solvable family of the harmonic-oscillator-like potentials with non-equidistant spectrum. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:220 / 223
页数:4
相关论文
共 64 条
[31]   EXACT ANALYTICAL EIGENFUNCTIONS FOR THE CHI-2+-LAMBDA-CHI-2/(1+G-CHI-2) INTERACTION [J].
GALLAS, JAC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (16) :3393-3397
[32]   Spectral approximation by the polar transformation [J].
Hall, RL ;
Zhou, WH .
CANADIAN JOURNAL OF PHYSICS, 1998, 76 (01) :31-37
[33]   HANKEL-HADAMARD ANALYSIS OF QUANTUM POTENTIAL X2+LAMBDA-X2/(1+GX2) [J].
HANDY, CR .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (18) :3593-3596
[34]   INTERACTION LAMBDA-X2-(1 + GX2) REVISITED [J].
HAUTOT, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 1981, 39 (01) :72-93
[35]   POLYNOMIAL-TYPE EIGENFUNCTIONS [J].
HEADING, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (08) :2355-2367
[36]  
Hille E., 1969, LECT ORDINARY DIFFER
[37]   Quasi-classical investigation of nonpolynomial central potentials with broken supersymmetry [J].
Junker, G ;
Roy, P ;
Varshni, YP .
CANADIAN JOURNAL OF PHYSICS, 1997, 75 (10) :695-703
[38]  
Kato T., 1966, Perturbation Theory for Linear Operators., DOI [10.1007/978-3-662-12678-3, DOI 10.1007/978-3-662-12678-3]
[39]  
KAUSHAL SK, 1979, J PHYS A, V12, pL253, DOI DOI 10.1088/0305-4470/12/10/003
[40]  
Kukulin V.I., 1989, THEORY RESONANCES PR