On the non-Arrhenius behavior of negative-bias temperature instability

被引:16
作者
Ang, DS [1 ]
Wang, S [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
关键词
D O I
10.1063/1.2180438
中图分类号
O59 [应用物理学];
学科分类号
摘要
Evidence from negative-bias temperature stressing of the ultrathin Si3N4/SiOx gate p-channel field-effect transistor indicates that non-Arrhenius behavior is a consequence of the superposition of two distinct defect generation mechanisms with different power-law time dependence (t(n)) and activation energy (E-a). The two mechanisms are (1) a hole trapping mechanism (t(0.1); E-a similar to 0.02 eV) and (2) the classical hydrogen diffusion mechanism (t(0.25); E-a similar to 0.2-0.3 eV). When temperature increases, the latter gradually dominates, causing the exponent n, of the overall time-dependent shift of the device threshold voltage (parallel to Delta V-th parallel to(1+2)proportional to t(n)), to increase. Eliminating the contribution of the hole trapping mechanism, i.e. parallel to Delta V-th parallel to(1) from overall threshold voltage shift consistently reproduces parallel to Delta V-th parallel to(2)proportional to t(n) characteristics which bear the classical signature of negative-bias temperature instability, i.e., n approximate to 0.25 and is independent of temperature. (c) 2006 American Institute of Physics.
引用
收藏
页数:3
相关论文
共 16 条
[1]  
Alam MA, 2003, 2003 IEEE INTERNATIONAL ELECTRON DEVICES MEETING, TECHNICAL DIGEST, P345
[2]   Evidence of two distinct degradation mechanisms from temperature dependence of negative bias stressing of the ultrathin gate p-MOSFET [J].
Ang, DS ;
Wang, S ;
Ling, CH .
IEEE ELECTRON DEVICE LETTERS, 2005, 26 (12) :906-908
[3]   Evidence for two distinct positive trapped charge components in NBTI stressed p-MOSFETs employing ultrathin CVD silicon nitride gate dielectric [J].
Ang, DS ;
Pey, KL .
IEEE ELECTRON DEVICE LETTERS, 2004, 25 (09) :637-639
[4]   Dynamic recovery of negative bias temperature instability in p-type metal-oxide-semiconductor field-effect transistors [J].
Ershov, M ;
Saxena, S ;
Karbasi, H ;
Winters, S ;
Minehane, S ;
Babcock, J ;
Lindley, R ;
Clifton, P ;
Redford, M ;
Shibkov, A .
APPLIED PHYSICS LETTERS, 2003, 83 (08) :1647-1649
[5]   Bonding and band offset in N2O-grown oxynitride [J].
Gritsenko, VA ;
Wong, H ;
Kwok, WM ;
Xu, JB .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2003, 21 (01) :241-245
[6]   Reaction-dispersive proton transport model for negative bias temperature instabilities [J].
Houssa, M ;
Aoulaiche, M ;
De Gendt, S ;
Groeseneken, G ;
Heyns, MM ;
Stesmans, A .
APPLIED PHYSICS LETTERS, 2005, 86 (09) :1-3
[7]   A thorough investigation of MOSFETs NBTI degradation [J].
Huard, V ;
Denais, M ;
Perrier, F ;
Revil, N ;
Parthasarathy, C ;
Bravaix, A ;
Vincent, E .
MICROELECTRONICS RELIABILITY, 2005, 45 (01) :83-98
[8]  
Huard V, 2003, INT REL PHY, P178
[9]   NEGATIVE BIAS STRESS OF MOS DEVICES AT HIGH ELECTRIC-FIELDS AND DEGRADATION OF MNOS DEVICES [J].
JEPPSON, KO ;
SVENSSON, CM .
JOURNAL OF APPLIED PHYSICS, 1977, 48 (05) :2004-2014
[10]   Temperature dependence of the negative bias temperature instability in the framework of dispersive transport [J].
Kaczer, B ;
Arkhipov, V ;
Degraeve, R ;
Collaert, N ;
Groeseneken, G ;
Goodwin, M .
APPLIED PHYSICS LETTERS, 2005, 86 (14) :1-3