Direct observation of Sn crystal growth during the lithiation and delithiation processes of SnO2 nanowires

被引:53
作者
Zhang, Li Qiang [2 ,4 ]
Liu, Xiao Hua [1 ]
Perng, Ya-Chuan [3 ]
Cho, Jea [3 ]
Chang, Jane P. [3 ]
Mao, Scott X. [2 ]
Ye, Zhi Zhen [4 ]
Huang, Jian Yu [1 ]
机构
[1] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA
[2] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA
[3] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA
[4] Zhejiang Univ, Dept Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China
基金
美国国家科学基金会;
关键词
Lithium ion battery; Tin whisker; Tin nanoparticles; In situ TEM; Tin oxide nanowire; ELECTROCHEMICAL LITHIATION; LITHIUM STORAGE; ELECTRODES; CAPACITY;
D O I
10.1016/j.micron.2012.01.016
中图分类号
TH742 [显微镜];
学科分类号
摘要
Tin (Sn) crystal growth on Sn-based anodes in lithium ion batteries is hazardous for reasons such as possible short-circuit failure by Sn whiskers and Sn-catalyzed electrolyte decomposition, but the growth mechanism of Sn crystals during battery cycling is not clear. Here we report different growth mechanisms of Sn crystal during the lithiation and delithiation processes of SnO2 nanowires revealed by in situ transmission electron microscopy (TEM). Large spherical Sn nanoparticles with sizes of 20-200 nm grew instantaneously upon lithiation of a single-crystalline SnO2 nanowire at large current density (j > 20 A/cm(2)), which suppressed formation of the LixSn alloy but promoted agglomeration of Sn atoms. Control experiments of Joule-heating (j approximate to 2400 A/cm(2)) the pristine SnO2 nanowires resulted in melting of the SnO2 nanowires but not Sn particle growth, indicating that the abnormal Sn particle growth was induced by both chemical reduction (i.e., breaking the SnO2 lattice to produce Sn atoms) and agglomeration of the Sn atoms assisted by Joule heating. Intriguingly, Sn crystals grew out of the nanowire surface via a different "squeeze-out" mechanism during delithiation of the lithiated SnO2 nanowires coated with an ultra-thin solid electrolyte LiAlSiOx layer. It is attributed to the negative stress gradient generated by the fast Li extraction in the surface region through the Li+-conducting LiAlSiOx layer. Our previous studies showed that Sn precipitation does not occur in the carbon-coated SnO2 nanowires, highlighting the effect of nanoengineering on tailoring the electrochemical reaction kinetics to suppress the hazardous Sn whiskers or nanoparticles formation in a lithium ion battery. (C) 2012 Published by Elsevier Ltd.
引用
收藏
页码:1127 / 1133
页数:7
相关论文
共 23 条
[1]   Anomalous, high-voltage irreversible capacity in tin electrodes for lithium batteries [J].
Beattie, SD ;
Hatchard, T ;
Bonakdarpour, A ;
Hewitt, KC ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (06) :A701-A705
[2]   Thin-film crystalline SnO2-lithium electrodes [J].
Brousse, T ;
Retoux, R ;
Herterich, U ;
Schleich, DM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (01) :1-4
[3]   Annotated tin whisker bibliography and anthology [J].
Galyon, GT .
IEEE TRANSACTIONS ON ELECTRONICS PACKAGING MANUFACTURING, 2005, 28 (01) :94-122
[4]   In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode [J].
Huang, Jian Yu ;
Zhong, Li ;
Wang, Chong Min ;
Sullivan, John P. ;
Xu, Wu ;
Zhang, Li Qiang ;
Mao, Scott X. ;
Hudak, Nicholas S. ;
Liu, Xiao Hua ;
Subramanian, Arunkumar ;
Fan, Hongyou ;
Qi, Liang ;
Kushima, Akihiro ;
Li, Ju .
SCIENCE, 2010, 330 (6010) :1515-1520
[5]   SnO2/Graphene Composite with High Lithium Storage Capability for Lithium Rechargeable Batteries [J].
Kim, Haegyeom ;
Kim, Sung-Wook ;
Park, Young-Uk ;
Gwon, Hyeokjo ;
Seo, Dong-Hwa ;
Kim, Yuhee ;
Kang, Kisuk .
NANO RESEARCH, 2010, 3 (11) :813-821
[6]   Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries [J].
Larcher, Dominique ;
Beattie, Shane ;
Morcrette, Mathieu ;
Edström, Kristina ;
Jumas, Jean-Claude ;
Tarascon, Jean-Marie .
Journal of Materials Chemistry, 2007, 17 (36) :3759-3772
[7]  
Li J., 2011, COMMUNICATIONS
[8]   Whisker formation on a thin film tin lithium-ion battery anode [J].
Li, Juchuan ;
Yang, Fuqian ;
Ye, Jia ;
Cheng, Yang-Tse .
JOURNAL OF POWER SOURCES, 2011, 196 (03) :1474-1477
[9]  
Liu X.H., 2011, ENERG ENVIRON SCI, DOI [10.1039/C1031EE01918J, DOI 10.1039/C1031EE01918J]
[10]   Anisotropic Swelling and Fracture of Silicon Nanowires during Lithiation [J].
Liu, Xiao Hua ;
Zheng, He ;
Zhong, Li ;
Huan, Shan ;
Karki, Khim ;
Zhang, Li Qiang ;
Liu, Yang ;
Kushima, Akihiro ;
Liang, Wen Tao ;
Wang, Jiang Wei ;
Cho, Jeong-Hyun ;
Epstein, Eric ;
Dayeh, Shadi A. ;
Picraux, S. Tom ;
Zhu, Ting ;
Li, Ju ;
Sullivan, John P. ;
Cumings, John ;
Wang, Chunsheng ;
Mao, Scott X. ;
Ye, Zhi Zhen ;
Zhang, Sulin ;
Huang, Jian Yu .
NANO LETTERS, 2011, 11 (08) :3312-3318