SnO2/Graphene Composite with High Lithium Storage Capability for Lithium Rechargeable Batteries

被引:166
作者
Kim, Haegyeom [1 ]
Kim, Sung-Wook [2 ]
Park, Young-Uk [2 ]
Gwon, Hyeokjo [2 ]
Seo, Dong-Hwa [2 ]
Kim, Yuhee [4 ]
Kang, Kisuk [1 ,2 ,3 ]
机构
[1] Korea Adv Inst Sci & Technol, Grad Sch Energy Environm Water & Sustainabil, Taejon 305701, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305701, South Korea
[3] Korea Adv Inst Sci & Technol, KAIST Inst Ecoenergy, Taejon 305701, South Korea
[4] Korea Inst Sci & Technol, Seoul 136791, South Korea
关键词
Graphene; SnO2; surface charge; nanocomposite; rechargeable batteries; lithium; EXFOLIATED GRAPHITE OXIDE; ION BATTERIES; ANODE MATERIALS; TIN OXIDE; GRAPHENE; CARBON; PERFORMANCE; ELECTRODES; NANOWIRES; SNO2;
D O I
10.1007/s12274-010-0050-4
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
SnO2/graphene nanocomposites have been fabricated by a simple chemical method. In the fabrication process, the control of surface charge causes echinoid-like SnO2 nanoparticles to be formed and uniformly decorated on the graphene. The electrostatic attraction between a graphene nanosheet (GNS) and the echinoid-like SnO2 particles under controlled pH creates a unique nanostructure in which extremely small SnO2 particles are uniformly dispersed on the GNS. The SnO2/graphene nanocomposite has been shown to perform as a high capacity anode with good cycling behavior in lithium rechargeable batteries. The anode retained a reversible capacity of 634 mA.h.g(-1) with a coulombic efficiency of 98% after 50 cycles. The high reversibility can be attributed to the mechanical buffering by the GNS against the large volume change of SnO2 during delithiation/lithiation reactions. Furthermore, the power capability is significantly enhanced due to the nanostructure, which enables facile electron transport through the GNS and fast delithiation/lithiation reactions within the echinoid-like nano-SnO2. The route suggested here for the fabrication of SnO2/graphene hybrid materials is a simple economical route for the preparation of other graphene-based hybrid materials which can be employed in many different fields.
引用
收藏
页码:813 / 821
页数:9
相关论文
共 39 条
[1]   Honeycomb Carbon: A Review of Graphene [J].
Allen, Matthew J. ;
Tung, Vincent C. ;
Kaner, Richard B. .
CHEMICAL REVIEWS, 2010, 110 (01) :132-145
[2]   Nanoparticles of SnO produced by sonochemistry as anode materials for rechargeable lithium batteries [J].
Aurbach, D ;
Nimberger, A ;
Markovsky, B ;
Levi, E ;
Sominski, E ;
Gedanken, A .
CHEMISTRY OF MATERIALS, 2002, 14 (10) :4155-4163
[3]   Novel tin-graphite composites as negative electrodes of Li-ion batteries [J].
Balan, L ;
Ghanbaja, J ;
Willmann, P ;
Billaud, D .
CARBON, 2005, 43 (11) :2311-2316
[4]   The electrochemical reaction of Li with amorphous Si-Sn alloys [J].
Beaulieu, LY ;
Hewitt, KC ;
Turner, RL ;
Bonakdarpour, A ;
Abdo, AA ;
Christensen, L ;
Eberman, KW ;
Krause, JL ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (02) :A149-A156
[5]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[6]   Enhanced reversible lithium storage in a nanosize silicon/graphene composite [J].
Chou, Shu-Lei ;
Wang, Jia-Zhao ;
Choucair, Mohammad ;
Liu, Hua-Kun ;
Stride, John A. ;
Dou, Shi-Xue .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (02) :303-306
[7]   Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composites [J].
Courtney, IA ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (06) :2045-2052
[8]   Key factors controlling the reversibility of the reaction of lithium with SnO2 and Sn2BPO6 glass [J].
Courtney, IA ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (09) :2943-2948
[9]  
Cullity BD, 2001, Elements of X-ray Diffraction
[10]   Interpretation of Raman spectra of disordered and amorphous carbon [J].
Ferrari, AC ;
Robertson, J .
PHYSICAL REVIEW B, 2000, 61 (20) :14095-14107