Rafts: Scale-dependent, active lipid organization at the cell surface

被引:306
作者
Mayor, S
Rao, M
机构
[1] Natl Ctr Biol Sci, TIFR, Bangalore 560065, Karnataka, India
[2] Raman Res Inst, Bangalore 560080, Karnataka, India
关键词
active; cholesterol; glycosylphosphatidyl inositol-anchored proteins; membrane structure; rafts; scale dependence; signaling; sorting;
D O I
10.1111/j.1600-0854.2004.00172.x
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Rafts have been conceptualized as lateral heterogeneities in the organization of cholesterol and sphingolipids, endowed with sorting and signaling functions. In this review we critically examine evidence for the main tenet of the 'raft hypothesis', namely lipid-dependent segregation of specific membrane components in the plasma membrane. We suggest that conventional approaches to studying raft organization wherein membranes are treated as passive, thermally equilibrated systems are unlikely to provide an adequate framework to understand the mechanisms of raft-organization in vivo. An emerging view of raft organization is that it is spatio-temporally regulated at different scales by the cell. This argues that rafts must be defined by simultaneous observation of components involved in particular functions. Recent evidence from the study of glycosylphosphatidyl inositol-anchored proteins, a common raft-marker, supports this picture in which larger scale, more stable rafts are induced from preexisting small-scale lipid-dependent structures actively maintained by cellular processes.
引用
收藏
页码:231 / 240
页数:10
相关论文
共 84 条
[1]   Cell biology - A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains [J].
Anderson, RGW ;
Jacobson, K .
SCIENCE, 2002, 296 (5574) :1821-1825
[2]  
Bagatolli LA, 2003, METHOD ENZYMOL, V360, P481
[3]   Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast [J].
Bagnat, M ;
Keränen, S ;
Shevchenko, A ;
Shevchenko, A ;
Simons, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (07) :3254-3259
[4]   Cell surface polarization during yeast mating [J].
Bagnat, M ;
Simons, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (22) :14183-14188
[5]   Acyl and alkyl chain length of GPI-anchors is critical for raft association in vitro [J].
Benting, J ;
Rietveld, A ;
Ansorge, I ;
Simons, K .
FEBS LETTERS, 1999, 462 (1-2) :47-50
[6]   Receptor clustering as a cellular mechanism to control sensitivity [J].
Bray, D ;
Levin, MD ;
Morton-Firth, CJ .
NATURE, 1998, 393 (6680) :85-88
[7]   Structure and function of sphingolipid- and cholesterol-rich membrane rafts [J].
Brown, DA ;
London, E .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (23) :17221-17224
[8]   Functions of lipid rafts in biological membranes [J].
Brown, DA ;
London, E .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1998, 14 :111-136
[9]   MECHANISM OF MEMBRANE ANCHORING AFFECTS POLARIZED EXPRESSION OF 2 PROTEINS IN MDCK CELLS [J].
BROWN, DA ;
CRISE, B ;
ROSE, JK .
SCIENCE, 1989, 245 (4925) :1499-1501
[10]   Structure of detergent-resistant membrane domains: Does phase separation occur in biological membranes? [J].
Brown, DA ;
London, E .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1997, 240 (01) :1-7